Save
Further Maths Formulas + definitions
Argand diagrams
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Ayumi
Visit profile
Cards (16)
y
y
y
axis
imaginary
x
x
x
axis
real
modulus
∣
z
∣
=
|z|=
∣
z
∣
=
√
x
2
+
√x^2+
√
x
2
+
y
2
y^2
y
2
2π radians
360
degrees
principle argument
−
π
<
θ
≤
π
-π<θ ≤π
−
π
<
θ
≤
π
tan θ
y
divided by
x
(no signs)
z
z
z
in the first quadrant
arg
z
=
z =
z
=
α
α
α
z
z
z
second quadrant
arg
z
z
z
=
=
=
π
−
α
π -α
π
−
α
z
z
z
third quadrant
arg
z
=
z =
z
=
−
(
π
−
α
)
-(π-α)
−
(
π
−
α
)
z
z
z
fourth quadrant
arg
z
=
z=
z
=
−
α
-α
−
α
∣
z
∣
=
|z| =
∣
z
∣
=
r
r
r
modulus argument form of
z
z
z
z
=
z =
z
=
r
(
c
o
s
θ
+
i
s
i
n
θ
)
r(cosθ+isinθ)
r
(
cos
θ
+
i
s
in
θ
)
∣
z
1
z
2
∣
|z1z2|
∣
z
1
z
2∣
∣
z
1
∣
∣
z
2
∣
|z1||z2|
∣
z
1∣∣
z
2∣
arg
(
z
1
z
2
)
(z1z2)
(
z
1
z
2
)
=
arg
z
1
z1
z
1
+ arg
z
2
z2
z
2
multiplication in modulus-argument form
r
1
r
2
(
c
o
s
(
θ
1
+
θ
2
)
+
r1r2(cos(θ 1+θ 2)+
r
1
r
2
(
cos
(
θ
1
+
θ
2
)
+
i
s
i
n
(
θ
1
+
θ
2
)
)
isin(θ 1+θ 2))
i
s
in
(
θ
1
+
θ
2
))
division in modulus-argument form
r
1
/
r
2
(
c
o
s
(
θ
1
−
θ
2
)
+
r1/r2 (cos(θ 1-θ 2)+
r
1/
r
2
(
cos
(
θ
1
−
θ
2
)
+
i
s
i
n
(
θ
1
−
θ
2
)
)
isin(θ 1-θ 2))
i
s
in
(
θ
1
−
θ
2
))