Save
Maths
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Lewis Murray
Visit profile
Cards (845)
What is
2
/
5
∗
2/5 *
2/5
∗
1
/
5
+
1/5 +
1/5
+
3
/
4
3/4
3/4
expressed with a common denominator of 20?
4
/
20
+
4/20 +
4/20
+
15
/
20
=
15/20 =
15/20
=
19
/
20
19/20
19/20
View source
How to evaluate
2
/
3
∗
2/3 *
2/3
∗
19
/
20
19/20
19/20
and simplify the result?
Multiply numerators:
2
∗
2 *
2
∗
19
=
19 =
19
=
38
38
38
Multiply denominators:
3
∗
3 *
3
∗
20
=
20 =
20
=
60
60
60
Simplify the fraction by dividing numerator and denominator by their
greatest common divisor
, which is 2:
38
/
60
=
38/60 =
38/60
=
19
/
30
19/30
19/30
View source
How to divide fractions:
2
1
6
÷
8
9
?
2\frac{1}{6} \div \frac{8}{9}?
2
6
1
÷
9
8
?
Convert
mixed number
to
improper fraction
:
2
1
6
=
2\frac{1}{6} =
2
6
1
=
13
6
\frac{13}{6}
6
13
Multiply
by the
reciprocal
of the divisor:
13
6
×
9
8
\frac{13}{6} \times \frac{9}{8}
6
13
×
8
9
Multiply numerators and denominators:
13
×
9
=
13 \times 9 =
13
×
9
=
117
,
117,
117
,
6
×
8
=
6 \times 8 =
6
×
8
=
48
48
48
Simplify
the fraction:
117
48
=
\frac{117}{48} =
48
117
=
39
16
\frac{39}{16}
16
39
Convert improper fraction to mixed number:
39
16
=
\frac{39}{16} =
16
39
=
2
7
16
2\frac{7}{16}
2
16
7
View source
What is
13
×
9
?
13 \times 9?
13
×
9
?
117
117
117
View source
What is
6
×
8
?
6 \times 8?
6
×
8
?
48
48
48
View source
How to simplify the fraction
117
/
48
?
117/48?
117/48
?
Divide both
numerator
and
denominator
by
3
:
117
÷
3
=
117 \div 3 =
117
÷
3
=
39
39
39
48
÷
3
=
48 \div 3 =
48
÷
3
=
16
16
16
Final simplified fraction:
39
/
16
39/16
39/16
View source
What is
39
/
16
39/16
39/16
as a mixed number?
2
7
16
2\frac{7}{16}
2
16
7
View source
What is the square root of 20 simplified?
2
5
2\sqrt{5}
2
5
View source
How can the expression
10
−
2
5
+
10 - 2\sqrt{5} +
10
−
2
5
+
8
5
8\sqrt{5}
8
5
be simplified?
10
+
10 +
10
+
6
5
6\sqrt{5}
6
5
View source
How do you rationalize the denominator of
12
/
15
?
12/\sqrt{15}?
12/
15
?
Multiply the
fraction
by
15
15
:
\frac{\sqrt{15}}{\sqrt{15}}:
15
15
:
12
15
×
15
15
=
\frac{12}{\sqrt{15}} \times \frac{\sqrt{15}}{\sqrt{15}} =
15
12
×
15
15
=
12
15
15
\frac{12\sqrt{15}}{15}
15
12
15
Simplify the
fraction
by dividing
numerator
and denominator by 3:
12
15
15
=
\frac{12\sqrt{15}}{15} =
15
12
15
=
4
15
5
\frac{4\sqrt{15}}{5}
5
4
15
View source
What is
15
÷
3
?
15 \div 3?
15
÷
3
?
5
5
5
View source
What is
12
15
÷
3
?
12\sqrt{15} \div 3?
12
15
÷
3
?
4
15
4\sqrt{15}
4
15
View source
How do you simplify the expression
5
c
2
÷
c
3
×
c
4
?
5c^2 \div c^3 \times c^4?
5
c
2
÷
c
3
×
c
4
?
Multiply
terms
with the same
base
by adding the powers:
c
3
×
c
4
=
c^3 \times c^4 =
c
3
×
c
4
=
c
3
+
4
=
c^{3+4} =
c
3
+
4
=
c
7
c^7
c
7
Divide terms with the same base by subtracting the powers:
c
2
÷
c
7
=
c^2 \div c^7 =
c
2
÷
c
7
=
c
2
−
7
=
c^{2-7} =
c
2
−
7
=
c
−
9
c^{-9}
c
−
9
Final simplified expression:
5
c
−
9
5c^{-9}
5
c
−
9
Express as a
positive power
:
5
/
c
9
5/c^9
5/
c
9
View source
What is
8
5
/
3
8^{5/3}
8
5/3
evaluated?
32
32
32
View source
What does
c
−
9
c^{-9}
c
−
9
equal in positive power notation?
1
/
c
9
1/c^9
1/
c
9
View source
What are the steps to evaluate
8
5
/
3
?
8^{5/3}?
8
5/3
?
Rewrite the
exponent
as a
root
:
(
8
3
)
5
( \sqrt[3]{8} )^5
(
3
8
)
5
Calculate the
cube root
of 8:
8
3
=
\sqrt[3]{8} =
3
8
=
2
2
2
Raise 2 to the
power
of 5:
2
5
=
2^5 =
2
5
=
32
32
32
View source
How to simplify the expression
a
4
×
3
a
a
?
\frac{a^4 \times 3a}{\sqrt{a}}?
a
a
4
×
3
a
?
Multiply
terms
on the
numerator
:
a
4
×
3
a
=
a^4 \times 3a =
a
4
×
3
a
=
3
a
5
3a^5
3
a
5
Divide by
a
,
\sqrt{a},
a
,
which is
a
1
/
2
:
a^{1/2}:
a
1/2
:
3
a
5
÷
a
1
/
2
=
3a^5 \div a^{1/2} =
3
a
5
÷
a
1/2
=
3
a
5
−
1
/
2
=
3a^{5 - 1/2} =
3
a
5
−
1/2
=
3
a
9
/
2
3a^{9/2}
3
a
9/2
Final
simplified
expression:
3
a
9
/
2
3a^{9/2}
3
a
9/2
View source
What is
5
−
1
/
2
?
5 - 1/2?
5
−
1/2
?
4
1
2
or
9
/
2
4\frac{1}{2} \text{ or } 9/2
4
2
1
or
9/2
View source
How do you express the expression
3
a
9
/
2
3a^{9/2}
3
a
9/2
as a product of integers and roots?
a
9
/
2
a^{9/2}
a
9/2
can be written as
(
a
1
/
2
)
9
=
(a^{1/2})^9 =
(
a
1/2
)
9
=
(
a
)
9
(\sqrt{a})^9
(
a
)
9
Final expression:
3
(
a
)
9
3(\sqrt{a})^9
3
(
a
)
9
View source
How to expand and simplify
(
3
x
−
2
)
(
2
x
2
+
5
x
−
1
)
?
(3x - 2)(2x^2 + 5x - 1)?
(
3
x
−
2
)
(
2
x
2
+
5
x
−
1
)?
Multiply each term in the first
bracket
by each term in the second bracket:
3
x
(
2
x
2
)
=
3x(2x^2) =
3
x
(
2
x
2
)
=
6
x
3
6x^3
6
x
3
3
x
(
5
x
)
=
3x(5x) =
3
x
(
5
x
)
=
15
x
2
15x^2
15
x
2
3
x
(
−
1
)
=
3x(-1) =
3
x
(
−
1
)
=
−
3
x
-3x
−
3
x
−
2
(
2
x
2
)
=
-2(2x^2) =
−
2
(
2
x
2
)
=
−
4
x
2
-4x^2
−
4
x
2
−
2
(
5
x
)
=
-2(5x) =
−
2
(
5
x
)
=
−
10
x
-10x
−
10
x
−
2
(
−
1
)
=
-2(-1) =
−
2
(
−
1
)
=
2
2
2
Combine
like terms
:
6
x
3
+
6x^3 +
6
x
3
+
11
x
2
−
13
x
+
11x^2 - 13x +
11
x
2
−
13
x
+
2
2
2
View source
How can the expression
(
x
+
7
)
2
(x + 7)^2
(
x
+
7
)
2
be expanded and simplified?
Use the
perfect square trinomial
formula
:
(
a
+
b
)
2
=
(a + b)^2 =
(
a
+
b
)
2
=
a
2
+
a^2 +
a
2
+
2
a
b
+
2ab +
2
ab
+
b
2
b^2
b
2
Here,
a
=
a =
a
=
x
x
x
and
b
=
b =
b
=
7
:
7:
7
:
(
x
+
7
)
2
=
(x + 7)^2 =
(
x
+
7
)
2
=
x
2
+
x^2 +
x
2
+
2
(
x
)
(
7
)
+
2(x)(7) +
2
(
x
)
(
7
)
+
7
2
=
7^2 =
7
2
=
x
2
+
x^2 +
x
2
+
14
x
+
14x +
14
x
+
49
49
49
View source
How do you factorize the expression
3
x
2
−
48
?
3x^2 - 48?
3
x
2
−
48
?
Find the
greatest common factor
(GCF) of the terms, which is 3:
3
(
x
2
−
16
)
3(x^2 - 16)
3
(
x
2
−
16
)
Recognize the
difference of two squares
in the parentheses:
x
2
−
16
=
x^2 - 16 =
x
2
−
16
=
(
x
+
4
)
(
x
−
4
)
(x + 4)(x - 4)
(
x
+
4
)
(
x
−
4
)
Final factored expression:
3
(
x
+
4
)
(
x
−
4
)
3(x + 4)(x - 4)
3
(
x
+
4
)
(
x
−
4
)
View source
What are the factors of 24 that add to -11?
11 and 24 can be
factored
as:
(-3) and (-8):
−
3
+
-3 +
−
3
+
(
−
8
)
=
(-8) =
(
−
8
)
=
−
11
,
-11,
−
11
,
−
3
×
−
8
=
-3 \times -8 =
−
3
×
−
8
=
24
24
24
View source
How to solve the quadratic equation
x
2
−
11
x
+
x^2 - 11x +
x
2
−
11
x
+
24
=
24 =
24
=
0
0
0
by factorizing?
Factor the quadratic expression:
(
x
−
3
)
(
x
−
8
)
=
(x - 3)(x - 8) =
(
x
−
3
)
(
x
−
8
)
=
0
0
0
Set each factor equal to 0:
x
−
3
=
x - 3 =
x
−
3
=
0
⟹
x
=
0 \implies x =
0
⟹
x
=
3
3
3
x
−
8
=
x - 8 =
x
−
8
=
0
⟹
x
=
0 \implies x =
0
⟹
x
=
8
8
8
Solutions:
x
=
x =
x
=
3
,
3,
3
,
x
=
x =
x
=
8
8
8
View source
How to express
7
x
−
3
−
2
x
7x - 3 - 2x
7
x
−
3
−
2
x
as a fraction in its simplest form?
Combine
like terms
:
7
x
−
2
x
−
3
=
7x - 2x - 3 =
7
x
−
2
x
−
3
=
5
x
−
3
5x - 3
5
x
−
3
Divide
the
expression
by
x
x
x
to form a fraction:
5
x
−
3
x
\frac{5x - 3}{x}
x
5
x
−
3
View source
How do you subtract algebraic fractions:
4
x
−
2
x
+
2
−
3
x
+
5
x
−
2
?
\frac{4x - 2}{x + 2} - \frac{3x + 5}{x - 2}?
x
+
2
4
x
−
2
−
x
−
2
3
x
+
5
?
Find the
common denominator
:
(
x
+
2
)
(
x
−
2
)
(x + 2)(x - 2)
(
x
+
2
)
(
x
−
2
)
Rewrite the fractions with the common denominator:
(
4
x
−
2
)
(
x
−
2
)
(
x
+
2
)
(
x
−
2
)
−
(
3
x
+
5
)
(
x
+
2
)
(
x
−
2
)
(
x
+
2
)
\frac{(4x - 2)(x - 2)}{(x + 2)(x - 2)} - \frac{(3x + 5)(x + 2)}{(x - 2)(x + 2)}
(
x
+
2
)
(
x
−
2
)
(
4
x
−
2
)
(
x
−
2
)
−
(
x
−
2
)
(
x
+
2
)
(
3
x
+
5
)
(
x
+
2
)
Expand the numerators:
4
x
2
−
8
x
−
2
x
+
4
−
(
3
x
2
+
6
x
+
5
x
+
10
)
(
x
+
2
)
(
x
−
2
)
=
\frac{4x^2 - 8x - 2x + 4 - (3x^2 + 6x + 5x + 10)}{(x + 2)(x - 2)} =
(
x
+
2
)
(
x
−
2
)
4
x
2
−
8
x
−
2
x
+
4
−
(
3
x
2
+
6
x
+
5
x
+
10
)
=
4
x
2
−
10
x
+
4
−
3
x
2
−
11
x
−
10
x
2
−
4
\frac{4x^2 - 10x + 4 - 3x^2 - 11x - 10}{x^2 - 4}
x
2
−
4
4
x
2
−
10
x
+
4
−
3
x
2
−
11
x
−
10
Combine
like terms
in the numerator:
x
2
−
21
x
−
6
x
2
−
4
\frac{x^2 - 21x - 6}{x^2 - 4}
x
2
−
4
x
2
−
21
x
−
6
View source
How to simplify the algebraic fraction
4
x
−
2
x
+
2
÷
3
x
+
5
x
−
2
?
\frac{4x - 2}{x + 2} \div \frac{3x + 5}{x - 2}?
x
+
2
4
x
−
2
÷
x
−
2
3
x
+
5
?
Multiply by the
reciprocal
of the divisor:
4
x
−
2
x
+
2
×
x
−
2
3
x
+
5
\frac{4x - 2}{x + 2} \times \frac{x - 2}{3x + 5}
x
+
2
4
x
−
2
×
3
x
+
5
x
−
2
Multiply numerators and denominators:
(
4
x
−
2
)
(
x
−
2
)
=
(4x - 2)(x - 2) =
(
4
x
−
2
)
(
x
−
2
)
=
4
x
2
−
8
x
−
2
x
+
4x^2 - 8x - 2x +
4
x
2
−
8
x
−
2
x
+
4
=
4 =
4
=
4
x
2
−
10
x
+
4x^2 - 10x +
4
x
2
−
10
x
+
4
,
4,
4
,
(
x
+
2
)
(
3
x
+
5
)
=
(x + 2)(3x + 5) =
(
x
+
2
)
(
3
x
+
5
)
=
3
x
2
+
3x^2 +
3
x
2
+
5
x
+
5x +
5
x
+
6
x
+
6x +
6
x
+
10
=
10 =
10
=
3
x
2
+
3x^2 +
3
x
2
+
11
x
+
11x +
11
x
+
10
10
10
Final simplified fraction:
4
x
2
−
10
x
+
4
3
x
2
+
11
x
+
10
\frac{4x^2 - 10x + 4}{3x^2 + 11x + 10}
3
x
2
+
11
x
+
10
4
x
2
−
10
x
+
4
View source
How to simplify the algebraic fraction
4
x
−
2
x
+
2
÷
5
x
−
2
?
\frac{4x - 2}{x + 2} \div \frac{5}{x - 2}?
x
+
2
4
x
−
2
÷
x
−
2
5
?
Multiply by the
reciprocal
of the divisor:
4
x
−
2
x
+
2
×
x
−
2
5
\frac{4x - 2}{x + 2} \times \frac{x - 2}{5}
x
+
2
4
x
−
2
×
5
x
−
2
Multiply numerators and denominators:
(
4
x
−
2
)
(
x
−
2
)
=
(4x - 2)(x - 2) =
(
4
x
−
2
)
(
x
−
2
)
=
4
x
2
−
10
x
+
4x^2 - 10x +
4
x
2
−
10
x
+
4
,
4,
4
,
(
x
+
2
)
(
5
)
=
(x + 2)(5) =
(
x
+
2
)
(
5
)
=
5
x
+
5x +
5
x
+
10
10
10
Final simplified fraction:
4
x
2
−
10
x
+
4
5
x
+
10
\frac{4x^2 - 10x + 4}{5x + 10}
5
x
+
10
4
x
2
−
10
x
+
4
View source
How to factorize the quadratic expression
x
2
+
x^2 +
x
2
+
x
−
20
?
x - 20?
x
−
20
?
Look for two numbers that
multiply
to -20 and
add
to 1:
Numbers:
5
and
-4
Factored expression
:
(
x
+
5
)
(
x
−
4
)
(x + 5)(x - 4)
(
x
+
5
)
(
x
−
4
)
View source
How to simplify the algebraic fraction
x
2
−
16
2
x
2
+
x
−
10
?
\frac{x^2 - 16}{2x^2 + x - 10}?
2
x
2
+
x
−
10
x
2
−
16
?
Factorize
the
numerator
:
x
2
−
16
=
x^2 - 16 =
x
2
−
16
=
(
x
+
4
)
(
x
−
4
)
(x + 4)(x - 4)
(
x
+
4
)
(
x
−
4
)
Factorize the
denominator
:
Product:
2
(
−
10
)
=
2(-10) =
2
(
−
10
)
=
−
20
-20
−
20
Numbers:
-4
and
5
Factored
expression
:
2
x
2
+
2x^2 +
2
x
2
+
5
x
−
4
x
−
10
=
5x - 4x - 10 =
5
x
−
4
x
−
10
=
x
(
2
x
+
5
)
−
2
(
2
x
+
5
)
=
x(2x + 5) - 2(2x + 5) =
x
(
2
x
+
5
)
−
2
(
2
x
+
5
)
=
(
x
−
2
)
(
2
x
+
5
)
(x - 2)(2x + 5)
(
x
−
2
)
(
2
x
+
5
)
Final
simplified
fraction:
(
x
+
4
)
(
x
−
4
)
(
x
−
2
)
(
2
x
+
5
)
\frac{(x + 4)(x - 4)}{(x - 2)(2x + 5)}
(
x
−
2
)
(
2
x
+
5
)
(
x
+
4
)
(
x
−
4
)
View source
What is the derivative of
x
3
?
x^3?
x
3
?
3
x
2
3x^2
3
x
2
View source
Find
f
(
−
3
)
f(-3)
f
(
−
3
)
if
f
(
x
)
=
f(x) =
f
(
x
)
=
x
3
−
2
?
x^3 - 2?
x
3
−
2
?
Substitute
x
=
x =
x
=
−
3
-3
−
3
into the
function
:
f
(
−
3
)
=
f(-3) =
f
(
−
3
)
=
(
−
3
)
3
−
2
=
(-3)^3 - 2 =
(
−
3
)
3
−
2
=
−
27
−
2
=
-27 - 2 =
−
27
−
2
=
−
29
-29
−
29
View source
How to calculate the value of
f
(
a
)
f(a)
f
(
a
)
if
f
(
x
)
=
f(x) =
f
(
x
)
=
5
+
5 +
5
+
4
x
4x
4
x
and
f
(
a
)
=
f(a) =
f
(
a
)
=
73
?
73?
73
?
Substitute
f
(
a
)
f(a)
f
(
a
)
into the
function
:
5
+
5 +
5
+
4
a
=
4a =
4
a
=
73
73
73
Solve for
a
:
a:
a
:
4
a
=
4a =
4
a
=
73
−
5
=
73 - 5 =
73
−
5
=
68
68
68
a
=
a =
a
=
68
/
4
=
68 / 4 =
68/4
=
17
17
17
View source
What is
1.08
1.08
1.08
as a percentage?
108
%
108\%
108%
View source
A flat's value increased by 8% to £94,500; how much did Nadim pay for it?
£94,500 represents
108
%
108\%
108%
of the original value
To find the original value, divide by
1.08
:
1.08:
1.08
:
94500
÷
1.08
=
94500 \div 1.08 =
94500
÷
1.08
=
87
,
500
87,500
87
,
500
Original price:
£87,500
View source
Tommy pays £1610 after a 30% discount; what was the original cost?
Discount of 30% means he paid
70%
of the original cost
Let the original cost be
x
:
x:
x
:
0.7
x
=
0.7x =
0.7
x
=
1610
1610
1610
Solve for
x
:
x:
x
:
x
=
x =
x
=
1610
/
0.7
=
1610 / 0.7 =
1610/0.7
=
2300
2300
2300
Original cost:
£2300
View source
How to calculate a company's annual profit at the end of 2025 if it started at £215,000 and increased by 3% each year?
Multiplier
:
1.03
1.03
1.03
(100% + 3%)
Apply multiplier over
4
years:
215000
×
1.0
3
4
215000 \times 1.03^4
215000
×
1.0
3
4
Calculate:
215000
×
1.0
3
4
≈
241
,
198.44
215000 \times 1.03^4 \approx 241,198.44
215000
×
1.0
3
4
≈
241
,
198.44
Round to the nearest thousand:
£242,000
View source
How does a car depreciate by 11% in the first year and then by 6% for the next two years?
Year 1: Depreciates by 11%, remaining
89%
(
multiplier
0.89
)
0.89)
0.89
)
Years 2 & 3: Depreciates by 6% each year, remaining
94%
each time (multiplier
0.94
0.94
0.94
each year)
View source
A car bought for £2,000 depreciates by 11% in the first year and then by 6% for two years; what is its worth after 3 years?
Year 1: Value =
2000
×
0.89
=
2000 \times 0.89 =
2000
×
0.89
=
1780
1780
1780
Year 2: Value =
1780
×
0.94
=
1780 \times 0.94 =
1780
×
0.94
=
1669.2
1669.2
1669.2
Year 3: Value =
1669.2
×
0.94
=
1669.2 \times 0.94 =
1669.2
×
0.94
=
15690088
15690088
15690088
Final worth:
£1569.088
View source
How to express
0.000000288
0.000000288
0.000000288
in scientific notation?
Move the decimal point to the right until you have a number between 1 and
10
:
2.88
2.88
2.88
Count the number of places moved:
7
Since the number is less than 1, the
exponent
is negative:
2.88
×
1
0
−
7
2.88 \times 10^{-7}
2.88
×
1
0
−
7
View source
See all 845 cards