Save
Nat 5 Maths
Trigonometry
Sine Rule
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Rachel Stickney
Visit profile
Cards (29)
What is the Sine Rule formula for sides?
\( \frac{a}{\
sin
A} = \frac{
b
}{\sin B} = \frac{c}{\sin C} \)
View source
What does the Sine Rule help to find?
Missing sides or angles in
triangles
View source
If \( a = 12 \text{ cm} \), \( A = 50^\circ \), and \( B = 87^\circ \), how do you find side \( b \)?
Use \( b = \frac{\
sin B
\cdot a}{\sin A} \)
View source
What is the calculated length of side \( b \) when \( a = 12 \text{ cm} \), \( A = 50^\circ \), and \( B = 87^\circ \)?
15.64
cm
View source
How do you find side \( R \) using the Sine Rule?
Given: \( S =
84
\text{
cm
} \), \( R = \text{unknown} \)
Use: \( \frac{\sin R}{\sin S} = \frac{R}{S} \)
Calculate: \( R = \frac{\sin(
63
^\circ) \cdot
17
}{\sin(84^\circ)} \)
Result:
15.2
cm
View source
What is the formula to find side \( T \) using the
Sine
Rule
?
\( \frac{\sin S}{\sin T} = \frac{S}{T} \)
View source
If \( S = 124 \text{ cm} \) and \( T = \text{unknown} \), how do you find \( T \)?
Use \( T = \frac{\
sin
S \cdot t}{\sin T} \)
View source
What is the calculated length of side \( T \) when \( S = 124 \text{ cm} \) and \( \sin(59^\circ) \)?
4.85
cm
View source
How do you find side \( U \) using the Sine Rule?
Given: \( 25 \text{ cm} \), \( \sin(
40
^\circ) \)
Use: \( \frac{\sin U}{\sin
123
^\circ} = \frac{25}{U} \)
Calculate: \( U = \frac{\sin(40^\circ) \cdot 25}{\sin(123^\circ)} \)
Result:
19.2
cm
View source
What is the relationship between angles \( D \) and \( F \) in the Sine Rule?
\( \frac{\sin
D}
{\sin
F}
= \frac{d}{f} \)
View source
If \( d = 10 \text{ cm} \) and \( F = 94^\circ \), how do you find side \( f \)?
Use \( f = \frac{\
sin F
\cdot d}{\
sin D
} \)
View source
What is the calculated length of side \( f \) when \( d =
10
\text{ cm} \) and \( F = 94^\circ \)?
15.2 cm
View source
How do you find side \( G \) using the Sine Rule?
Given: \( e = 8 \text{ cm} \), \( \sin(25^\circ) \)
Use: \( \frac{\sin G}{\sin E} = \frac{g}{e} \)
Calculate: \( G = \frac{\sin(25^\circ) \cdot 8}{\sin(93^\circ)} \)
Result:
3.39 cm
View source
What is the formula for the cosine of angle A in the sine rule?
cos
A
=
\cos A =
cos
A
=
b
2
+
c
2
−
a
2
2
b
c
\frac{b^2 + c^2 - a^2}{2bc}
2
b
c
b
2
+
c
2
−
a
2
View source
What is the formula to find the length a in the sine rule?
a
=
a =
a
=
b
2
+
c
2
−
2
b
cos
A
\sqrt{b^2 + c^2 - 2b\cos A}
b
2
+
c
2
−
2
b
cos
A
View source
What does the angle represent in the sine rule?
The angle is in the middle of the formula
View source
How do you find angle ∠MNP using cosine?
Use
cos
N
=
\cos N =
cos
N
=
m
2
+
p
2
−
n
2
2
m
p
\frac{m^2 + p^2 - n^2}{2mp}
2
m
p
m
2
+
p
2
−
n
2
View source
What is the calculation for
3
2
2
=
32^2 =
3
2
2
=
1
7
2
−
4
5
2
17^2 - 45^2
1
7
2
−
4
5
2
?
It simplifies to
3
2
2
=
32^2 =
3
2
2
=
289
−
2025
289 - 2025
289
−
2025
View source
What is the value of
cos
N
\cos N
cos
N
calculated in the example?
cos
N
=
\cos N =
cos
N
=
−
0.91
-0.91
−
0.91
View source
How do you find angle N from
cos
N
=
\cos N =
cos
N
=
−
0.91
-0.91
−
0.91
?
Use
N
=
N =
N
=
cos
−
1
(
−
0.91
)
\cos^{-1}(-0.91)
cos
−
1
(
−
0.91
)
View source
What is the approximate value of angle N?
N
≈
155.62
2
∘
N \approx 155.622^\circ
N
≈
155.62
2
∘
View source
How do you find angle M using the cosine rule?
Use
cos
M
=
\cos M =
cos
M
=
1
7
2
+
4
8
2
−
3
2
2
2
×
17
×
48
\frac{17^2 + 48^2 - 32^2}{2 \times 17 \times 48}
2
×
17
×
48
1
7
2
+
4
8
2
−
3
2
2
View source
What is the calculated value of
cos
M
\cos M
cos
M
?
cos
M
≈
0.96
\cos M \approx 0.96
cos
M
≈
0.96
View source
How do you find angle M from
cos
M
≈
0.96
\cos M \approx 0.96
cos
M
≈
0.96
?
Use
M
=
M =
M
=
cos
−
1
(
0.96
)
\cos^{-1}(0.96)
cos
−
1
(
0.96
)
View source
What is the approximate value of angle M?
M
≈
16.
3
∘
M \approx 16.3^\circ
M
≈
16.
3
∘
View source
How do you find angle P using the cosine rule?
Use
cos
P
=
\cos P =
cos
P
=
3
2
2
+
4
8
2
−
1
7
2
2
×
32
×
48
\frac{32^2 + 48^2 - 17^2}{2 \times 32 \times 48}
2
×
32
×
48
3
2
2
+
4
8
2
−
1
7
2
View source
What is the calculated value of
cos
P
\cos P
cos
P
?
cos
P
≈
0.989
\cos P \approx 0.989
cos
P
≈
0.989
View source
How do you find angle P from
cos
P
≈
0.989
\cos P \approx 0.989
cos
P
≈
0.989
?
Use
P
=
P =
P
=
cos
−
1
(
0.989
)
\cos^{-1}(0.989)
cos
−
1
(
0.989
)
View source
What is the approximate value of angle P?
P
≈
8.
1
∘
P \approx 8.1^\circ
P
≈
8.
1
∘
View source