Sine Rule

Cards (29)

  • What is the Sine Rule formula for sides?
    \( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)
  • What does the Sine Rule help to find?
    Missing sides or angles in triangles
  • If \( a = 12 \text{ cm} \), \( A = 50^\circ \), and \( B = 87^\circ \), how do you find side \( b \)?
    Use \( b = \frac{\sin B \cdot a}{\sin A} \)
  • What is the calculated length of side \( b \) when \( a = 12 \text{ cm} \), \( A = 50^\circ \), and \( B = 87^\circ \)?
    15.64 cm
  • How do you find side \( R \) using the Sine Rule?
    • Given: \( S = 84 \text{ cm} \), \( R = \text{unknown} \)
    • Use: \( \frac{\sin R}{\sin S} = \frac{R}{S} \)
    • Calculate: \( R = \frac{\sin(63^\circ) \cdot 17}{\sin(84^\circ)} \)
    • Result: 15.2 cm
  • What is the formula to find side \( T \) using the Sine Rule?

    \( \frac{\sin S}{\sin T} = \frac{S}{T} \)
  • If \( S = 124 \text{ cm} \) and \( T = \text{unknown} \), how do you find \( T \)?
    Use \( T = \frac{\sin S \cdot t}{\sin T} \)
  • What is the calculated length of side \( T \) when \( S = 124 \text{ cm} \) and \( \sin(59^\circ) \)?
    4.85 cm
  • How do you find side \( U \) using the Sine Rule?
    • Given: \( 25 \text{ cm} \), \( \sin(40^\circ) \)
    • Use: \( \frac{\sin U}{\sin 123^\circ} = \frac{25}{U} \)
    • Calculate: \( U = \frac{\sin(40^\circ) \cdot 25}{\sin(123^\circ)} \)
    • Result: 19.2 cm
  • What is the relationship between angles \( D \) and \( F \) in the Sine Rule?
    \( \frac{\sin D}{\sin F} = \frac{d}{f} \)
  • If \( d = 10 \text{ cm} \) and \( F = 94^\circ \), how do you find side \( f \)?
    Use \( f = \frac{\sin F \cdot d}{\sin D} \)
  • What is the calculated length of side \( f \) when \( d = 10 \text{ cm} \) and \( F = 94^\circ \)?

    15.2 cm
  • How do you find side \( G \) using the Sine Rule?
    • Given: \( e = 8 \text{ cm} \), \( \sin(25^\circ) \)
    • Use: \( \frac{\sin G}{\sin E} = \frac{g}{e} \)
    • Calculate: \( G = \frac{\sin(25^\circ) \cdot 8}{\sin(93^\circ)} \)
    • Result: 3.39 cm
  • What is the formula for the cosine of angle A in the sine rule?
    cosA=\cos A =b2+c2a22bc \frac{b^2 + c^2 - a^2}{2bc}
  • What is the formula to find the length a in the sine rule?
    a=a =b2+c22bcosA \sqrt{b^2 + c^2 - 2b\cos A}
  • What does the angle represent in the sine rule?
    The angle is in the middle of the formula
  • How do you find angle ∠MNP using cosine?
    Use cosN=\cos N =m2+p2n22mp \frac{m^2 + p^2 - n^2}{2mp}
  • What is the calculation for 322=32^2 =172452 17^2 - 45^2?

    It simplifies to 322=32^2 =2892025 289 - 2025
  • What is the value of cosN\cos N calculated in the example?

    cosN=\cos N =0.91 -0.91
  • How do you find angle N from cosN=\cos N =0.91 -0.91?

    Use N=N =cos1(0.91) \cos^{-1}(-0.91)
  • What is the approximate value of angle N?
    N155.622N \approx 155.622^\circ
  • How do you find angle M using the cosine rule?
    Use cosM=\cos M =172+4823222×17×48 \frac{17^2 + 48^2 - 32^2}{2 \times 17 \times 48}
  • What is the calculated value of cosM\cos M?

    cosM0.96\cos M \approx 0.96
  • How do you find angle M from cosM0.96\cos M \approx 0.96?

    Use M=M =cos1(0.96) \cos^{-1}(0.96)
  • What is the approximate value of angle M?
    M16.3M \approx 16.3^\circ
  • How do you find angle P using the cosine rule?
    Use cosP=\cos P =322+4821722×32×48 \frac{32^2 + 48^2 - 17^2}{2 \times 32 \times 48}
  • What is the calculated value of cosP\cos P?

    cosP0.989\cos P \approx 0.989
  • How do you find angle P from cosP0.989\cos P \approx 0.989?

    Use P=P =cos1(0.989) \cos^{-1}(0.989)
  • What is the approximate value of angle P?
    P8.1P \approx 8.1^\circ