Correlations

Cards (12)

  • Correlations
    method of data analysis
    - measures strength and direction of relationship between 2 or more variables - see a trend or pattern.
    - calculate a correlation co-efficient.
    - ranges from +1.0 (perfect positive correlation), to -1.0 (perfect negative correlation)
    - no correlation = 0.0
  • Positive Correlation
    one variable increase, the other variable increases
  • Negative Correlation
    one variables increases, the other variable decreases
  • Positive Correlation example

    people rated as less attractive tend to choose less attractive dates
  • Negative Correlation example

    the higher the number of vaccinations, the lower the occurrences of illness
  • No Correlation example

    there's no relationship between intelligence and amount of ice cream eaten
  • Curvilinear
    as temperature increase so do level of aggression, but as temperature continues to increase, levels of aggression decrease
  • correlation co-efficient
    0- 0.33/-0.33 - weak
    0.33/-0.33 - 0.66/-0.66 - moderate
    0.66/-0.66 - 1/-1 - strong
  • Strengths
    allows predictions to be made.
    allows quantification of relationships -> correlations can show strength of relationship between 2 variables.
    no manipulation -> don't require manipulation of behaviour
    quick and ethically sound.
  • Weaknesses
    cause and effect can't be inferred -> no IV or DV.
    extraneous relationships -> other variables may influence the measured variables.
    problems in reading the result -> lack of correlation may indicate no relationship
    only works for linear relationships -> e.g. relationship between arousal + performance - curvilinear.
  • Differences between experiments and correlations
    correlational study looks at relationship between 2 co-variables whereas an experiment point to cause and effect (manipulation of IV caused a change in DV)
    an alternative (correlational) hypothesis will predict a relationship.
    an experimental hypothesis will predict a differences
  • Examples of Correlational Hypothesis
    non-directional - there will be a correlation between the amount of revision and test score.
    directional - there will be a positive correlation between amount of revision and test score.
    null - there will be no relationship between revision and test score.