TOPIC 6 - RESPONSE TO CHANGES

Cards (108)

  • Stimulus
    • Detectable change in the environment
    • detected by cells called receptors
  • Nervous system structure
    • Central nervous system = brain and spinal cord
    • peripheral nervous system = receptors, sensory and motor neurones
  • Simple reflex arc
    :)
  • Importance of simple reflexes
    :)
  • Tropism
    • Response of plants to stimuli via growth
    • can be positive (growing towards stimulus) or negative (growing away from stimulus)
    • controlled by specific growth factors (IAA)
  • Specific tropisms
    :)
  • Indoleacetic acid
    :)
  • Phototropism in shoots

    :)
  • Phototropism in roots
    • Root tip produces IAA
    • IAA concentration increases on lower (darker) side
    • IAA inhibits cell elongation 
    • root cells grow on lighter side
    • root bends away from light
    • negative phototropism
  • Gravitropism in shoots
    • Shoot tip produces IAA
    • IAA diffuses from upper side to lower side of shoot in response to gravity
    • IAA stimulates cell elongation so plant grows upwards
    • negative gravitropism
  • Gravitropism in roots
    • Root tip produces IAA
    • IAA accumulates on lower side of root in response to gravity 
    • IAA inhibits cell elongation 
    • root bends down towards gravity and anchors plant
    • positive gravitropism
  • Taxis
    • Directional response by simple mobile organisms
    • move towards favourable stimuli (positive taxis) or away from unfavourable stimuli (negative taxis)
  • Kinesis
    :)
  • Receptors
    :)
  • Pacinian corpuscle
    • Receptor responds to pressure changes
    • occur deep in skin mainly in fingers and feet
    • sensory neurone wrapped with layers of tissue
  • Pacinian corpuscle structure

    :)
  • How pacinian corpuscle detects pressure
    :)
  • Rod cells
    • Concentrated at periphery of retina
    • contains rhodopsin pigment
    • connected in groups to one bipolar cell (retinal convergence)
    • do not detect colour
  • Cone cells
    • Concentrated on the fovea 
    • fewer at periphery of retina 
    • 3 types of cones containing different iodopsin pigments
    • one cone connects to one neurone
    • detect coloured light
  • Rods and cones: describe differences in sensitivity to light
    • Rods are more sensitive to light
    • cones are less sensitive to light
  • Rods and cones: describe
    differences in visual acuity
    • Cones give higher visual acuity
    • rods have a lower visual acuity
  • Visual acuity
    • Ability to distinguish between separate sources of light
    • a higher visual acuity means more detailed, focused vision
  • Rods and cones: describe differences in colour vision
    • Rods allow monochromatic vision (black and white)
    • cones allow colour vision
  • Why rods have high sensitivity to light
    • Rods are connected in groups to one bipolar cell
    • retinal convergence
    • spatial summation
    • stimulation of each individual- cell alone is sub-threshold but because rods are connected in groups more likely threshold potential is reached
  • Why cones have low sensitivity to light
    • One cone joins to one neurone 
    • no retinal convergence / spatial summation
    • higher light intensity required to reach threshold potential
  • Why rods have low visual acuity
    • Rods connected in groups to one bipolar cell
    • retinal convergence
    • spatial summation
    • many neurones only generate 1 impulse / action potential -> cannot distinguish between separate sources of light
  • Why cones have high visual acuity
    • One cone joins to one neurone
    • 2 adjacent cones are stimulated, brain receives 2 impulses
    • can distinguish between separate sources of light
  • Why rods have monochromatic vision
    • One type of rod cell
    • one pigment (rhodopsin)
  • Why cones give colour vision
    • 3 types of cone cells with different optical pigments which absorb different wavelengths of light
    • red-sensitive, green-sensitive and blue-sensitive cones 
    • stimulation of different proportions of cones gives greater range of colour perception
  • Myogenic
    • When a muscle (cardiac muscle) can contract and relax without receiving signals from nerves
  • Sinoatrial node
    • Located in right atrium and is known as the pacemaker 
    • releases wave of depolarisation across the atria, causing muscles to contract
  • Atrioventricular node
    • Located near the border of the right / left ventricle within atria 
    • releases another wave of depolarisation after a short delay when it detects the first wave from the SAN
  • Bundle of His
    • Runs through septum
    • can conduct and pass the wave of depolarisation down the septum and Purkyne fibres in walls of ventricles
  • Purkyne fibres
    • In walls of ventricles
    • spread wave of depolarisation from AVN across bottom of the heart
    • the muscular walls of ventricles contract from the bottom up
  • Role of non- conductive tissue
    • Located between atria and ventricles
    • prevents wave of depolarisation travelling down to ventricles
    • causes slight delay in ventricles contracting so that ventricles fill before contraction
  • Importance of short delay between SAN and AVN waves of depolarisation
    • Ensures enough time for atria to pump all blood into ventricles
    • ventricle becomes full
  • Role of the medulla oblongata
    • Controls heart rate via the autonomic nervous system 
    • uses sympathetic and parasympathetic nervous system to control SAN rhythm
  • Chemoreceptors
    • Located in carotid artery and aorta
    • responds to pH / CO2 conc. changes
  • Baroreceptors
    • Located in carotid artery and aorta
    • responds to pressure changes
  • Response to high blood pressure
    • Baroreceptor detects high blood pressure
    • impulse sent to medulla
    • more impulses sent to SAN along parasympathetic neurones (releasing noradrenaline)
    • heart rate slowed