Cards (86)

  • What do inverse trigonometric functions return?
    The angle
  • The principal value range of arccosx\arccos x is 0yπ0 ≤ y ≤ π
    True
  • The range of csc1x\csc^{ - 1} x includes y0y ≠ 0
    True
  • What is the derivative of exe^{x}?

    exe^{x}
  • What is the derivative of arcsinx\arcsin x?

    \frac{1}{\sqrt{1 - x^{2}}}</latex>
  • Match the inverse trigonometric function with its notation:
    Arcsine ↔️ sin1(x)\sin^{ - 1}(x) or arcsin(x)\arcsin(x)
    Arccosine ↔️ cos1(x)\cos^{ - 1}(x) or arccos(x)\arccos(x)
    Arctangent ↔️ tan1(x)\tan^{ - 1}(x) or arctan(x)\arctan(x)
  • What is the range of arctanx\arctan x?

    π2<y<π2- \frac{\pi}{2} < y < \frac{\pi}{2}
  • Match the trigonometric function with its derivative:
    1️⃣ sinx\sin x
    2️⃣ cosx\cos x
    3️⃣ tanx\tan x
  • The derivative of lnx\ln x is 1x\frac{1}{x}
  • Steps to derive the derivative of arcsinx\arcsin x
    1️⃣ Rewrite y=y =arcsinx \arcsin x as x=x =siny \sin y
    2️⃣ Differentiate both sides with respect to xx
    3️⃣ Solve for dydx\frac{dy}{dx}
    4️⃣ Find cosy\cos y in terms of xx
    5️⃣ Substitute cosy\cos y into the expression for dydx\frac{dy}{dx}
  • The range of csc1x\csc^{ - 1} x is π2yπ2- \frac{\pi}{2} ≤ y ≤ \frac{\pi}{2}, y ≠ 0
  • The domain of the arccosine function is -1 ≤ x ≤ 1

    True
  • Match each inverse trigonometric function with its range:
    Arcsine ↔️ -π/2 ≤ y ≤ π/2
    Arccosine ↔️ 0 ≤ y ≤ π
    Arctangent ↔️ -π/2 < y < π/2
    Arccotangent ↔️ 0 < y < π
    Arcsecant ↔️ 0 ≤ y ≤ π, y ≠ π/2
    Arccosecant ↔️ -π/2 ≤ y ≤ π/2, y ≠ 0
  • The derivative of sin x is cos x
  • The derivative of eˣ is eˣ
    True
  • What is the derivative of arcsin x?
    \frac{1}{\sqrt{1 - x^{2}}}</latex>
  • The domain of arcsinx\arcsin x is -1 ≤ x ≤ 1
  • The domain of \sec^{-1} x</latex> is x ≤ -1 or x ≥ 1
  • Match the trigonometric function with its derivative:
    sinx\sin x ↔️ cosx\cos x
    cosx\cos x ↔️ sinx- \sin x
    tanx\tan x ↔️ sec2x\sec^{2} x
  • Inverse trigonometric functions find angles corresponding to trigonometric values.
    True
  • The value of cosy\cos y in the derivative of arcsinx\arcsin x is 1x2\sqrt{1 - x^{2}}
    True
  • What is the notation for the arcsine function?
    asin(x) or sin⁻¹(x)
  • What is the domain of the arctangent function?
    All real numbers
  • What is the derivative of xⁿ according to the power rule?
    nxⁿ⁻¹
  • Match each function with its derivative:
    xⁿ ↔️ nxⁿ⁻¹
    sin x ↔️ cos x
    cos x ↔️ -sin x
    tan x ↔️ sec² x
    ln x ↔️ 1/x
  • Steps to derive the derivative of arccos x using implicit differentiation and the chain rule:
    1️⃣ Rewrite y = arccos x as x = cos y
    2️⃣ Differentiate both sides with respect to x
    3️⃣ Solve for dy/dx
    4️⃣ Find sin y using a right triangle and the Pythagorean theorem
    5️⃣ Substitute sin y into dy/dx
  • The derivative of arccosx\arccos x is 11x2- \frac{1}{\sqrt{1 - x^{2}}}
  • The derivative of \arccos x</latex> is 11x2- \frac{1}{\sqrt{1 - x^{2}}}
  • What is cosy\cos y equal to in the equation x=x =cosy \cos y?

    x1\frac{x}{1}
  • The value of siny\sin y in the equation x=x =cosy \cos y is 1x2\sqrt{1 - x^{2}}
    True
  • The derivative of arctanx\arctan x is 1sec2y\frac{1}{\sec^{2} y}
  • The derivative of arctanx\arctan x is 11+x2\frac{1}{1 + x^{2}}
  • What is the range of arccosx\arccos x?

    0yπ0 \leq y \leq \pi
  • The equation y=y =arcsinx \arcsin x can be rewritten as x=x =siny \sin y.

    True
  • The derivative of arccosx\arccos x is 11x2- \frac{1}{\sqrt{1 - x^{2}}}
  • The sine of yy in the derivative of arccosx\arccos x is found using the Pythagorean
  • The derivative of arctanx\arctan x is found using implicit differentiation.

    True
  • Match the inverse trigonometric function with its derivative:
    csc1x\csc^{ - 1} x ↔️ 1xx21- \frac{1}{|x| \sqrt{x^{2} - 1}}
    sec1x\sec^{ - 1} x ↔️ 1xx21\frac{1}{|x| \sqrt{x^{2} - 1}}
    cot1x\cot^{ - 1} x ↔️ 11+x2- \frac{1}{1 + x^{2}}
  • Match the inverse trigonometric function with its notation:
    Arcsine ↔️ sin1(x)\sin^{ - 1}(x)
    Arccosine ↔️ cos1(x)\cos^{ - 1}(x)
    Arctangent ↔️ tan1(x)\tan^{ - 1}(x)
    Arccotangent ↔️ cot1(x)\cot^{ - 1}(x)
  • What is the derivative of x3x^{3}?

    3x23x^{2}