Save
...
Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
3.4 Differentiating Inverse Trigonometric Functions
Derivatives of inverse trigonometric functions:
Save
Share
Learn
Content
Leaderboard
Share
Learn
Cards (86)
What do inverse trigonometric functions return?
The angle
The principal value range of
arccos
x
\arccos x
arccos
x
is
0
≤
y
≤
π
0 ≤ y ≤ π
0
≤
y
≤
π
True
The range of
csc
−
1
x
\csc^{ - 1} x
csc
−
1
x
includes
y
≠
0
y ≠ 0
y
=
0
True
What is the derivative of
e
x
e^{x}
e
x
?
e
x
e^{x}
e
x
What is the derivative of
arcsin
x
\arcsin x
arcsin
x
?
\frac{1}{\sqrt{1 - x^{2}}}</latex>
Match the inverse trigonometric function with its notation:
Arcsine ↔️
sin
−
1
(
x
)
\sin^{ - 1}(x)
sin
−
1
(
x
)
or
arcsin
(
x
)
\arcsin(x)
arcsin
(
x
)
Arccosine ↔️
cos
−
1
(
x
)
\cos^{ - 1}(x)
cos
−
1
(
x
)
or
arccos
(
x
)
\arccos(x)
arccos
(
x
)
Arctangent ↔️
tan
−
1
(
x
)
\tan^{ - 1}(x)
tan
−
1
(
x
)
or
arctan
(
x
)
\arctan(x)
arctan
(
x
)
What is the range of
arctan
x
\arctan x
arctan
x
?
−
π
2
<
y
<
π
2
- \frac{\pi}{2} < y < \frac{\pi}{2}
−
2
π
<
y
<
2
π
Match the trigonometric function with its derivative:
1️⃣
sin
x
\sin x
sin
x
2️⃣
cos
x
\cos x
cos
x
3️⃣
tan
x
\tan x
tan
x
The derivative of
ln
x
\ln x
ln
x
is
1
x
\frac{1}{x}
x
1
Steps to derive the derivative of
arcsin
x
\arcsin x
arcsin
x
1️⃣ Rewrite
y
=
y =
y
=
arcsin
x
\arcsin x
arcsin
x
as
x
=
x =
x
=
sin
y
\sin y
sin
y
2️⃣ Differentiate both sides with respect to
x
x
x
3️⃣ Solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
4️⃣ Find
cos
y
\cos y
cos
y
in terms of
x
x
x
5️⃣ Substitute
cos
y
\cos y
cos
y
into the expression for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
The range of
csc
−
1
x
\csc^{ - 1} x
csc
−
1
x
is
−
π
2
≤
y
≤
π
2
- \frac{\pi}{2} ≤ y ≤ \frac{\pi}{2}
−
2
π
≤
y
≤
2
π
, y ≠ 0
The domain of the arccosine function is
-1
≤ x ≤ 1
True
Match each inverse trigonometric function with its range:
Arcsine ↔️ -π/2 ≤ y ≤ π/2
Arccosine ↔️ 0 ≤ y ≤ π
Arctangent ↔️ -π/2 < y < π/2
Arccotangent ↔️ 0 < y < π
Arcsecant ↔️ 0 ≤ y ≤ π, y ≠ π/2
Arccosecant ↔️ -π/2 ≤ y ≤ π/2, y ≠ 0
The derivative of sin x is
cos x
The derivative of eˣ is eˣ
True
What is the derivative of arcsin x?
\frac{1}{\sqrt{1 - x^{2}}}</latex>
The domain of
arcsin
x
\arcsin x
arcsin
x
is -1 ≤ x ≤ 1
The domain of \sec^{-1} x</latex> is
x ≤ -1 or x ≥ 1
Match the trigonometric function with its derivative:
sin
x
\sin x
sin
x
↔️
cos
x
\cos x
cos
x
cos
x
\cos x
cos
x
↔️
−
sin
x
- \sin x
−
sin
x
tan
x
\tan x
tan
x
↔️
sec
2
x
\sec^{2} x
sec
2
x
Inverse trigonometric functions find angles corresponding to trigonometric values.
True
The value of
cos
y
\cos y
cos
y
in the derivative of
arcsin
x
\arcsin x
arcsin
x
is
1
−
x
2
\sqrt{1 - x^{2}}
1
−
x
2
True
What is the notation for the arcsine function?
asin(x) or sin⁻¹(x)
What is the domain of the arctangent function?
All real numbers
What is the derivative of xⁿ according to the power rule?
nxⁿ⁻¹
Match each function with its derivative:
xⁿ ↔️ nxⁿ⁻¹
sin x ↔️ cos x
cos x ↔️ -sin x
tan x ↔️ sec² x
ln x ↔️ 1/x
Steps to derive the derivative of arccos x using implicit differentiation and the chain rule:
1️⃣ Rewrite y = arccos x as x = cos y
2️⃣ Differentiate both sides with respect to x
3️⃣ Solve for dy/dx
4️⃣ Find sin y using a right triangle and the Pythagorean theorem
5️⃣ Substitute sin y into dy/dx
The derivative of
arccos
x
\arccos x
arccos
x
is
−
1
1
−
x
2
- \frac{1}{\sqrt{1 - x^{2}}}
−
1
−
x
2
1
The derivative of \arccos x</latex> is
−
1
1
−
x
2
- \frac{1}{\sqrt{1 - x^{2}}}
−
1
−
x
2
1
What is
cos
y
\cos y
cos
y
equal to in the equation
x
=
x =
x
=
cos
y
\cos y
cos
y
?
x
1
\frac{x}{1}
1
x
The value of
sin
y
\sin y
sin
y
in the equation
x
=
x =
x
=
cos
y
\cos y
cos
y
is
1
−
x
2
\sqrt{1 - x^{2}}
1
−
x
2
True
The derivative of
arctan
x
\arctan x
arctan
x
is
1
sec
2
y
\frac{1}{\sec^{2} y}
s
e
c
2
y
1
The derivative of
arctan
x
\arctan x
arctan
x
is
1
1
+
x
2
\frac{1}{1 + x^{2}}
1
+
x
2
1
What is the range of
arccos
x
\arccos x
arccos
x
?
0
≤
y
≤
π
0 \leq y \leq \pi
0
≤
y
≤
π
The equation
y
=
y =
y
=
arcsin
x
\arcsin x
arcsin
x
can be rewritten as
x
=
x =
x
=
sin
y
\sin y
sin
y
.
True
The derivative of
arccos
x
\arccos x
arccos
x
is
−
1
1
−
x
2
- \frac{1}{\sqrt{1 - x^{2}}}
−
1
−
x
2
1
The sine of
y
y
y
in the derivative of
arccos
x
\arccos x
arccos
x
is found using the Pythagorean
The derivative of
arctan
x
\arctan x
arctan
x
is found using implicit differentiation.
True
Match the inverse trigonometric function with its derivative:
csc
−
1
x
\csc^{ - 1} x
csc
−
1
x
↔️
−
1
∣
x
∣
x
2
−
1
- \frac{1}{|x| \sqrt{x^{2} - 1}}
−
∣
x
∣
x
2
−
1
1
sec
−
1
x
\sec^{ - 1} x
sec
−
1
x
↔️
1
∣
x
∣
x
2
−
1
\frac{1}{|x| \sqrt{x^{2} - 1}}
∣
x
∣
x
2
−
1
1
cot
−
1
x
\cot^{ - 1} x
cot
−
1
x
↔️
−
1
1
+
x
2
- \frac{1}{1 + x^{2}}
−
1
+
x
2
1
Match the inverse trigonometric function with its notation:
Arcsine ↔️
sin
−
1
(
x
)
\sin^{ - 1}(x)
sin
−
1
(
x
)
Arccosine ↔️
cos
−
1
(
x
)
\cos^{ - 1}(x)
cos
−
1
(
x
)
Arctangent ↔️
tan
−
1
(
x
)
\tan^{ - 1}(x)
tan
−
1
(
x
)
Arccotangent ↔️
cot
−
1
(
x
)
\cot^{ - 1}(x)
cot
−
1
(
x
)
What is the derivative of
x
3
x^{3}
x
3
?
3
x
2
3x^{2}
3
x
2
See all 86 cards