Cards (47)

  • Vectors are commonly expressed in column form.
  • In column notation, the top value represents the horizontal component.
  • What is the result of \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} 3 \\ - 1 \end{bmatrix}</latex>?
    [54]\begin{bmatrix} 5 \\ 4 \end{bmatrix}
  • When multiplying a vector by a scalar, you multiply each component of the vector by the scalar.
  • To multiply a vector by a scalar, you multiply each component of the vector by the scalar.

    True
  • Match the component of a vector with its scalar multiplication:
    Horizontal component ↔️ kaka
    Vertical component ↔️ kbkb
  • Vectors provide more comprehensive information about a physical quantity than scalars
  • In column notation, a vector is represented as [ab]\begin{bmatrix} a \\ b \end{bmatrix}, where aa is the horizontal component and bb is the vertical component.
  • The formula for vector subtraction in column notation is \begin{bmatrix} a_{1} - a_{2} \\ b_{1} - b_{2} \end{bmatrix}</latex>
  • The formula for adding two vectors in column notation is \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} + \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} = \begin{bmatrix} a_{1} + a_{2} \\ b_{1} + b_{2} \end{bmatrix}</latex>
  • If v=v =[ab] \begin{bmatrix} a \\ b \end{bmatrix} and kk is a scalar, what is the formula for scalar multiplication?

    k[ab]=k \begin{bmatrix} a \\ b \end{bmatrix} =[kakb] \begin{bmatrix} ka \\ kb \end{bmatrix}
  • What is the definition of parallel vectors?
    Vectors with same or opposite direction
  • What theorem is used to calculate the magnitude of a vector?
    Pythagoras' Theorem
  • The magnitude of a vector represents its length or size.
    True
  • What do position vectors indicate in geometric problems?
    Location of a point
  • What two properties does a vector have?
    Magnitude and direction
  • What is the magnitude of the vector [34]\begin{bmatrix} 3 \\ 4 \end{bmatrix}?

    5
  • Describe the movement indicated by the vector \begin{bmatrix} 3 \\ - 2 \end{bmatrix}</latex>.
    Right and down
  • To subtract two vectors, you subtract their corresponding components.
  • Multiplying a vector by a scalar changes its magnitude but not its direction.
    False
  • The formula for subtracting two vectors \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix}</latex> and [a2b2]\begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} is [a1a2b1b2]\begin{bmatrix} a_{1} - a_{2} \\ b_{1} - b_{2} \end{bmatrix}
  • Multiplying a vector by a scalar kk scales its magnitude by a factor of kk
  • What are the two key properties of a vector?
    Magnitude and direction
  • Match the type of quantity with its properties:
    Vector ↔️ Magnitude and direction
    Scalar ↔️ Magnitude only
  • What is the formula for vector addition in column notation?
    \begin{bmatrix} a_{1} +a2b1+ a_{2} \\ b_{1} + b_{2} \end{bmatrix}
  • What is the formula for subtracting two vectors using their components in column notation?
    [a1b1][a2b2]=\begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} - \begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix} =[a1a2b1b2] \begin{bmatrix} a_{1} - a_{2} \\ b_{1} - b_{2} \end{bmatrix}
  • To multiply a vector by a scalar, you multiply each component of the vector by the scalar.

    True
  • If v=v =[32] \begin{bmatrix} 3 \\ 2 \end{bmatrix} and k=k =4 4, then <latex>4[32]=< latex > 4 \begin{bmatrix} 3 \\ 2 \end{bmatrix} =[128] \begin{bmatrix} 12 \\ 8 \end{bmatrix}</latex>

    True
  • The vectors [23]\begin{bmatrix} 2 \\ 3 \end{bmatrix} and [46]\begin{bmatrix} 4 \\ 6 \end{bmatrix} are parallel because 2×[23]=2 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} =[46] \begin{bmatrix} 4 \\ 6 \end{bmatrix}.

    True
  • What is the magnitude of the vector v=v =[34] \begin{bmatrix} 3 \\ 4 \end{bmatrix}?

    5
  • Match the vector type with its formula:
    Position Vector ↔️ OP=\vec{OP} =[ab] \begin{bmatrix} a \\ b \end{bmatrix}
    Displacement Vector ↔️ PQ=\vec{PQ} =OQOP \vec{OQ} - \vec{OP}
  • To prove that the midpoints of the sides of a quadrilateral form a parallelogram, one must demonstrate that the displacement vectors between the midpoints are equal and parallel.

    True
  • A scalar has both magnitude and direction.
    False
  • The horizontal component of a vector can indicate movement left or right.
    True
  • To add two vectors, you add their corresponding components.

    True
  • What is the result of [42][13]\begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \end{bmatrix}?

    [31]\begin{bmatrix} 3 \\ - 1 \end{bmatrix}
  • What is the formula for adding two vectors [a1b1]\begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix} and [a2b2]\begin{bmatrix} a_{2} \\ b_{2} \end{bmatrix}?

    \begin{bmatrix} a_{1} +a2b1+ a_{2} \\ b_{1} + b_{2} \end{bmatrix}
  • What is the formula for multiplying a vector [ab]\begin{bmatrix} a \\ b \end{bmatrix} by a scalar kk?

    [kakb]\begin{bmatrix} ka \\ kb \end{bmatrix}
  • If v=v =[32] \begin{bmatrix} 3 \\ 2 \end{bmatrix} and k=k =4 4, then 4v = \begin{bmatrix} 12 \\ 8 \end{bmatrix}</latex>.

    True
  • The vector \begin{bmatrix} 3 \\ 4 \end{bmatrix}</latex> has a magnitude of 5 and points northeast.

    True