Cards (48)

  • An inverse function f1(x)f^{ - 1}(x) of a function f(x)f(x) reverses the operation
  • What is a key property of inverse functions regarding their domain and range?
    Domain of ff is the range of f1f^{ - 1}
  • An inverse function exists if f(x)</latex> is one-to-one
    True
  • The inverse function theorem provides the derivative of an inverse function at a point given the derivative of the original function
  • The condition f(a)0f'(a) \neq 0 is necessary for the inverse function theorem

    True
  • If f(a)=f(a) =b b, then f1(b)=f^{ - 1}(b) =a a
    True
  • The graph of f1f^{ - 1} is the reflection of ff over the line y=y =x x
    True
  • How can you graphically determine if a function is one-to-one?
    Horizontal line test
  • What is the formula for the derivative of an inverse function according to the inverse function theorem?
    (f1)(y)=(f^{ - 1})'(y) =1f(a) \frac{1}{f'(a)}
  • What are the steps to find the inverse function f1(x)f^{ - 1}(x) from a given function f(x)f(x)?

    Replace f(x)f(x) with yy, swap xx and yy, solve for yy, replace yy with f1(x)f^{ - 1}(x)
  • Inverse functions are functions that "undo" another function
  • Match the property of inverse functions with its description:
    Reflection ↔️ The graph of f^{-1} is the reflection of f over y = x
    Identity ↔️ f(f^{-1}(x)) = x and f^{-1}(f(x)) = x
  • The inverse function theorem requires that ff is differentiable and f(x)0f'(x) \neq 0.

    True
  • Match the inverse trigonometric function with its derivative:
    \arcsin x</latex> ↔️ 11x2\frac{1}{\sqrt{1 - x^{2}}}
    arccosx\arccos x ↔️ 11x2\frac{ - 1}{\sqrt{1 - x^{2}}}
    arctanx\arctan x ↔️ 11+x2\frac{1}{1 + x^{2}}
  • Steps to find the derivative of f1(x)=f^{ - 1}(x) =arcsin(2x) \arcsin(2x)
    1️⃣ Identify f(x)=f(x) =sin(x) \sin(x) and f(x)=f'(x) =cos(x) \cos(x)
    2️⃣ Solve sin(a)=\sin(a) =2x 2x to find a=a =arcsin(2x) \arcsin(2x)
    3️⃣ Calculate f(arcsin(2x))=f'(\arcsin(2x)) =cos(arcsin(2x)) \cos(\arcsin(2x))
    4️⃣ Use the inverse function theorem: (f1)(x)=(f^{ - 1})'(x) =1cos(arcsin(2x)) \frac{1}{\cos(\arcsin(2x))}
  • Steps to apply the inverse function theorem
    1️⃣ Find the derivative of the original function
    2️⃣ Solve for aa such that f(a)=f(a) =x x
    3️⃣ Evaluate the derivative at aa
    4️⃣ Apply the formula (f1)(x)=(f^{ - 1})'(x) =1f(a) \frac{1}{f'(a)}
  • The domain of ff is the range of f1f^{ - 1}, and vice versa.

    True
  • What is the first step in applying the inverse function theorem to find the derivative of f1(y)f^{ - 1}(y)?

    Find f(x)f'(x)
  • What is the formula for (f1)(y)(f^{ - 1})'(y) in terms of f(a)f'(a)?

    1f(a)\frac{1}{f'(a)}
  • Match the inverse trigonometric function with its derivative:
    arcsinx\arcsin x ↔️ 11x2\frac{1}{\sqrt{1 - x^{2}}}
    arccosx\arccos x ↔️ 11x2\frac{ - 1}{\sqrt{1 - x^{2}}}
    arctanx\arctan x ↔️ 11+x2\frac{1}{1 + x^{2}}
  • If f(x) = 2x + 3</latex>, what is f(x)f'(x)?

    22
  • Steps to find the inverse function f1(x)f^{ - 1}(x) from f(x)f(x)
    1️⃣ Replace f(x)f(x) with yy
    2️⃣ Swap xx and yy
    3️⃣ Solve for yy in terms of xx
    4️⃣ Replace yy with f1(x)f^{ - 1}(x)
  • f(f1(x))=f(f^{ - 1}(x)) =x x and f1(f(x))=f^{ - 1}(f(x)) =x x are key relationships for inverse functions
  • Match the function with its inverse property:
    Input xx ↔️ Output yy
    Output yy ↔️ Input xx
  • The inverse function theorem requires that ff is differentiable

    True
  • The domain of ff is the range of f1f^{ - 1}, and vice versa
  • What does an inverse function map the output of a function back to?
    Original input
  • What condition must a function satisfy to have an inverse?
    One-to-one
  • Steps to find (f^{ - 1})'(2)</latex> for f(x)=f(x) =x3+ x^{3} +1 1
    1️⃣ Find f(x)=f'(x) =3x2 3x^{2}
    2️⃣ Solve f(a)=f(a) =2 2 to find a=a =1 1
    3️⃣ Calculate f(1)=f'(1) =3 3
    4️⃣ Use the inverse function theorem: (f1)(2)=(f^{ - 1})'(2) =13 \frac{1}{3}
  • What is the derivative of arcsin(2x)\arcsin(2x)?

    214x2\frac{2}{\sqrt{1 - 4x^{2}}}
  • Applying the inverse function theorem: (f1)(x)=(f^{ - 1})'(x) =1f(x32)= \frac{1}{f'(\frac{x - 3}{2})} =12 \frac{1}{2}2
  • What is an inverse function designed to do?
    Reverse the operation
  • Match the function property with its description:
    Domain ↔️ x values
    Range ↔️ y values
  • Steps to find (f1)(2)(f^{ - 1})'(2) for f(x) = x^{3} + 1</latex>

    1️⃣ Find f(x)=f'(x) =3x2 3x^{2}
    2️⃣ Solve f(a)=f(a) =2 2, which gives a=a =1 1
    3️⃣ Evaluate f(1)=f'(1) =3 3
    4️⃣ Apply the formula (f1)(2)=(f^{ - 1})'(2) =13 \frac{1}{3}
  • To find the value of aa such that f(a) = y</latex>, you need to solve the equation f(a) = yy
  • What is the derivative of arcsinx\arcsin x?

    11x2\frac{1}{\sqrt{1 - x^{2}}}
  • Steps to find the derivative of an inverse function using the inverse function theorem
    1️⃣ Identify the original function f(x)f(x) and find its derivative f(x)f'(x)
    2️⃣ Find the value x=x =a a such that f(a)=f(a) =y y
    3️⃣ Evaluate f(a)f'(a)
    4️⃣ Apply the formula (f1)(y)=(f^{ - 1})'(y) =1f(a) \frac{1}{f'(a)}
  • A one-to-one function must pass the horizontal line test
    True
  • The domain of a function is the range of its inverse, and vice versa.
    True
  • The inverse function theorem states that (f1)(y)=(f^{ - 1})'(y) =1f(a) \frac{1}{f'(a)}, where f(a)0f'(a) \neq 0 and y=y =f(a) f(a).derivative