Two basic concepts needed to engineer biological systems:
How information flows in biological systems
How information flow is controlled
Biology is highly complex and differs from other engineering disciplines:
Interactions in biology are based on molecules, not physical position
Biology is subject to natural selection, leading to new definitions of robustness
Concepts like complexity and emergent behaviour must be understood in biology
DNA structure:
DNA stores information in biological systems
Composed of two separate strands made of nucleotides (phosphate, deoxyribose sugar, and base)
Bases (A, G, C, T) provide variability and code for information
Complementarity between bases (A-T, G-C) leads to double-helix structure
DNA replication allows for reproduction by synthesising new daughter DNA helices
PCR (Polymerase Chain Reaction):
Method for exponential amplification of DNA
Relies on DNA polymerases isolated from extremophile organisms
Specificity achieved through oligonucleotide primers
Temperature cycling used for denaturation, annealing, and synthesis
New DNA polymerases with proofreading domains increase accuracy in amplification
Information flow in biology:
DNA stores information, proteins perform functions in the cell
Central dogma: DNA transcribed into RNA, then translated into protein
Genes code for proteins or functional RNA molecules
Messenger RNA (mRNA) carries message to ribosome for translation
Genetic code:
Triplet code: three nucleotides code for one amino acid
Redundancy in the code, except for tryptophan and methionine
Methionine is the initiating amino acid in bacterial proteins
Codon usage varies between organisms, affecting translation efficiency
Proteins:
Majority of functional and structural roles in organisms carried out by proteins
Form structural materials, act as motors, enzymes, and regulatory proteins
Diversity of proteins from 20 amino acids
Amino acids join to form peptide bonds, leading to the formation of polypeptides or proteins
Proteins' functional properties do not come directly from their linear sequence of amino acids, but from the three-dimensional form they adopt
It is not currently possible to computationally predict the three-dimensional structure of a given protein sequence
ray crystallography has enabled atomic resolution structures of proteins to be determined
There are over 60,000 protein X-ray structures that have been solved
Nuclear magnetic resonance (NMR) and electron microscopy also contribute to understanding protein structure and function
RNA polymerase is responsible for the transcription of DNA into mRNA
Prokaryotes have simpler transcription systems compared to eukaryotes
A gene consists of the open reading frame (ORF) that codes for a protein and regulatory elements that control its expression
Promoters are the genetic switches that control gene expression
Sigma factors are essential for prokaryotic RNA polymerase activity and global gene regulation
Transcription factors like activators and repressors control gene transcription
Ribosome binding sites (RBS) on mRNA molecules determine the level of protein synthesis
RNA can act as a catalyst (ribozymes) and regulate gene expression
Small RNA molecules can modulate translation and regulate gene expression
Riboswitches are sequences in mRNA that modulate translation through binding small metabolite molecules
Las enzimas son las proteínas que catalizan reacciones químicas y biológicas.
La proteína es un polipéptido, que está formado por una o más cadenas de aminoácidos.
Los aminoácidos se unen mediante puentes peptídicos para formar polipéptidos, los cuales pueden ser cortados por enzimas para liberar nuevos aminoácidos.
Enzimas específicas reconocen y unen con sus sustratos, lo que permite el proceso de catálisis.
La secuencia de aminoácidos determina la estructura tridimensional y función de una proteína.
En algunas proteínas, existen regiones donde dos o más cadenas de aminoácidos se unen para formar una única molécula.
El sitio activo es la parte del enzima donde tiene lugar la reacción química.
Algunas enzimas tienen cofactores, moléculas no proteicas necesarias para su actividad.
Existen diferentes tipos de enzimas según su función, como hidrolasa (que rompe enlaces), transferasa (que transfiere grupos funcionales) y oxidorreductasa (que interviene en reacciones redox).
El pH y temperatura también influyen en la actividad de las enzimas.
Cada tipo de anticuerpo reconoce un solo antígeno específico.