Synthetic

Cards (33)

  • Two basic concepts needed to engineer biological systems:
    • How information flows in biological systems
    • How information flow is controlled
  • Biology is highly complex and differs from other engineering disciplines:
    • Interactions in biology are based on molecules, not physical position
    • Biology is subject to natural selection, leading to new definitions of robustness
    • Concepts like complexity and emergent behaviour must be understood in biology
  • DNA structure:
    • DNA stores information in biological systems
    • Composed of two separate strands made of nucleotides (phosphate, deoxyribose sugar, and base)
    • Bases (A, G, C, T) provide variability and code for information
    • Complementarity between bases (A-T, G-C) leads to double-helix structure
    • DNA replication allows for reproduction by synthesising new daughter DNA helices
  • PCR (Polymerase Chain Reaction):
    • Method for exponential amplification of DNA
    • Relies on DNA polymerases isolated from extremophile organisms
    • Specificity achieved through oligonucleotide primers
    • Temperature cycling used for denaturation, annealing, and synthesis
    • New DNA polymerases with proofreading domains increase accuracy in amplification
  • Information flow in biology:
    • DNA stores information, proteins perform functions in the cell
    • Central dogma: DNA transcribed into RNA, then translated into protein
    • Genes code for proteins or functional RNA molecules
    • Messenger RNA (mRNA) carries message to ribosome for translation
  • Genetic code:
    • Triplet code: three nucleotides code for one amino acid
    • Redundancy in the code, except for tryptophan and methionine
    • Methionine is the initiating amino acid in bacterial proteins
    • Codon usage varies between organisms, affecting translation efficiency
  • Proteins:
    • Majority of functional and structural roles in organisms carried out by proteins
    • Form structural materials, act as motors, enzymes, and regulatory proteins
    • Diversity of proteins from 20 amino acids
    • Amino acids join to form peptide bonds, leading to the formation of polypeptides or proteins
  • Proteins' functional properties do not come directly from their linear sequence of amino acids, but from the three-dimensional form they adopt
  • It is not currently possible to computationally predict the three-dimensional structure of a given protein sequence
    1. ray crystallography has enabled atomic resolution structures of proteins to be determined
  • There are over 60,000 protein X-ray structures that have been solved
  • Nuclear magnetic resonance (NMR) and electron microscopy also contribute to understanding protein structure and function
  • RNA polymerase is responsible for the transcription of DNA into mRNA
  • Prokaryotes have simpler transcription systems compared to eukaryotes
  • A gene consists of the open reading frame (ORF) that codes for a protein and regulatory elements that control its expression
  • Promoters are the genetic switches that control gene expression
  • Sigma factors are essential for prokaryotic RNA polymerase activity and global gene regulation
  • Transcription factors like activators and repressors control gene transcription
  • Ribosome binding sites (RBS) on mRNA molecules determine the level of protein synthesis
  • RNA can act as a catalyst (ribozymes) and regulate gene expression
  • Small RNA molecules can modulate translation and regulate gene expression
  • Riboswitches are sequences in mRNA that modulate translation through binding small metabolite molecules
  • Las enzimas son las proteínas que catalizan reacciones químicas y biológicas.
  • La proteína es un polipéptido, que está formado por una o más cadenas de aminoácidos.
  • Los aminoácidos se unen mediante puentes peptídicos para formar polipéptidos, los cuales pueden ser cortados por enzimas para liberar nuevos aminoácidos.
  • Enzimas específicas reconocen y unen con sus sustratos, lo que permite el proceso de catálisis.
  • La secuencia de aminoácidos determina la estructura tridimensional y función de una proteína.
  • En algunas proteínas, existen regiones donde dos o más cadenas de aminoácidos se unen para formar una única molécula.
  • El sitio activo es la parte del enzima donde tiene lugar la reacción química.
  • Algunas enzimas tienen cofactores, moléculas no proteicas necesarias para su actividad.
  • Existen diferentes tipos de enzimas según su función, como hidrolasa (que rompe enlaces), transferasa (que transfiere grupos funcionales) y oxidorreductasa (que interviene en reacciones redox).
  • El pH y temperatura también influyen en la actividad de las enzimas.
  • Cada tipo de anticuerpo reconoce un solo antígeno específico.