roots of polynomials

Cards (22)

  • Roots of a quadratic equation:
    • A quadratic equation could have 2 real roots or 2 complex roots
    • If 𝜢 and 𝜷 are roots of the equation 𝒂π‘₯Β² + 𝒃π‘₯ + 𝒄 = 0, then:
    • 𝜢 + 𝜷 = -𝒃/𝒂
    • 𝜢𝜷 = 𝒄/𝒂
  • Roots of a cubic equation:
    • A cubic equation could have 3 real roots or 1 real root and 2 complex roots
    • If 𝜢, 𝜷, and 𝜸 are roots of the equation 𝒂π‘₯Β³ + 𝒃π‘₯Β² + 𝒄�� + 𝒅 = 0, then:
    • 𝜢 + 𝜷 + 𝜸 = -𝒃/𝒂
    • 𝜢𝜷 + 𝜷𝜸 + 𝜸𝜢 = 𝒄/𝒂
    • 𝜢𝜷𝜸 = -𝒅/𝒂
  • Roots of a quartic equation:
    • A quartic equation could have 4 real roots, 4 complex roots, or 2 real and 2 complex roots
    • If 𝜢, 𝜷, 𝜸, and 𝜹 are roots of the equation 𝒂π‘₯⁴ + 𝒃π‘₯Β³ + 𝒄π‘₯Β² + 𝒅π‘₯ + 𝒆 = 0, then:
    • 𝜢 + 𝜷 + 𝜸 + οΏ½οΏ½ = -𝒃/𝒂
    • 𝜢𝜷 + 𝜢𝜸 + 𝜢𝜹 + 𝜷𝜸 + 𝜷𝜹 + 𝜸𝜹 = 𝒄/𝒂
    • 𝜢𝜷𝜸 + 𝜢𝜷𝜹 + 𝜢𝜸𝜹 + 𝜷𝜸𝜹 = -𝒅/𝒂
    • 𝜢𝜷𝜸𝜹 = 𝒆/𝒂
    • 𝜢³ + οΏ½οΏ½Β³ + 𝜸³ = (οΏ½οΏ½ + οΏ½οΏ½ + οΏ½οΏ½)Β³ - 3(𝜢 + 𝜷 + 𝜸)(οΏ½οΏ½οΏ½οΏ½ + 𝜷𝜸 + 𝜸𝜢) + 3𝜢𝜷𝜸
  • Expressions relating to the roots of a polynomial:
    • Reciprocals:
    • 1/𝜢 + 1/𝜷 = (𝜢 + 𝜷)/𝜢𝜷
    • 1/𝜢 + 1/𝜷 + 1/𝜸 = (𝜢𝜷 + 𝜷𝜸 + 𝜸𝜢)/𝜢𝜷𝜸
    • 1/𝜢 + 1/𝜷 + 1/𝜸 + 1/𝜹 = (𝜢𝜷𝜸 + 𝜷𝜸𝜹 + 𝜸𝜹𝜢 + 𝜹𝜢𝜷)/𝜢𝜷𝜸𝜹
    • Products of powers:
    • 𝜢ⁿ Γ— 𝜷ⁿ = (𝜢𝜷)ⁿ
    • 𝜢ⁿ Γ— 𝜷ⁿ Γ— 𝜸ⁿ = (𝜢𝜷𝜸)ⁿ
    • 𝜢ⁿ Γ— 𝜷ⁿ Γ— 𝜸ⁿ Γ— 𝜹ⁿ = (𝜢𝜷𝜸𝜹)ⁿ
    • Rules for sums of squares:
    • 𝜢² + 𝜷² = (𝜢 + 𝜷)Β² - 2𝜢𝜷
    • 𝜢² + 𝜷² + 𝜸² = (𝜢 + 𝜷 + 𝜸)Β² - 2(𝜢𝜷 + 𝜷𝜸 + 𝜸𝜢)
    • 𝜢² + 𝜷² + 𝜸² + 𝜹² = (𝜢 + 𝜷 + 𝜸 + 𝜹)Β² - 2(𝜢𝜷 + 𝜢𝜸 + 𝜢𝜹 + 𝜷𝜸 + 𝜷𝜹 + 𝜸𝜹)
    • Rules for sums of cubes:
    • 𝜢³ + 𝜷³ = (𝜢 + 𝜷)Β³ - 3𝜢𝜷(𝜢 + 𝜷)
  • Linear transformations of roots:
    • Given a polynomial, you can find the equation of a second polynomial whose roots are a linear transformation of the roots of the first
    • If a polynomial 𝑓(π‘₯) = π‘Žπ‘₯⁴ + 𝑏π‘₯Β³ + 𝑐π‘₯Β² + 𝑑π‘₯ + 𝑒 has roots 𝛼, 𝛽, 𝛾, and 𝛿, then the polynomial with roots 𝑔𝛼 + β„Ž, 𝑔𝛽 + β„Ž, 𝑔𝛾 + β„Ž, and 𝑔𝛿 + β„Ž, where 𝑔 and β„Ž are real constants, is given by 𝑓(𝑀 - β„Žπ‘”)
  • k = Β±ΞΎ2
  • m = -4/3k
  • If k = ΞΎ2, then m = -2ΞΎ2/3
  • If k = -ΞΎ2, then m = 2ΞΎ2/3
  • Ξ± + Ξ² + Ξ³ = 4/7
  • Ξ±Ξ²Ξ³ = -6/7
  • Ξ±3Ξ²3Ξ³3 = -216/343
  • 1/Ξ± + 1/Ξ² + 1/Ξ³ = 1/6
  • βˆ‘Ξ± = 0
  • βˆ‘Ξ±Ξ² = 2
  • βˆ‘Ξ±Ξ²Ξ³ = 1
  • βˆ‘Ξ±Ξ²Ξ³Ξ΄ = 3
  • 1/Ξ± + 1/Ξ² + 1/Ξ³ + 1/Ξ΄ = 1/3
  • Ξ±2 + Ξ²2 + Ξ³2 + Ξ΄2 = -4
  • (2Ξ±), (2Ξ²), (2Ξ³), (2Ξ΄) are roots of the equation w4 + 4w3 - 10w2 + 8w - 8 = 0
  • (Ξ± - 1), (Ξ² - 1), (Ξ³ - 1), (Ξ΄ - 1) are roots of the equation 2w4 + 12w3 + 19w2 + 12w + 2 = 0