6.13 Integrating Using Trigonometric Substitution

    Cards (22)

    • Steps to use trigonometric substitution in integration
      1️⃣ Identify when to use trigonometric substitution
      2️⃣ Choose the appropriate trigonometric substitution
      3️⃣ Evaluate the integral using the substitution
      4️⃣ Rewrite the result in terms of the original variable
    • Trigonometric substitution is used when an integral contains expressions of the form \sqrt{a^{2} - x^{2}}
    • Match the expression with its trigonometric substitution
      a2x2\sqrt{a^{2} - x^{2}} ↔️ x=x =asin(θ) a\sin(\theta)
      \sqrt{a^{2} + x^{2}} ↔️ x=x =atan(θ) a\tan(\theta)
      x2a2\sqrt{x^{2} - a^{2}} ↔️ x=x =asec(θ) a\sec(\theta)
    • Trigonometric substitutions simplify integrals by eliminating square roots using trigonometric identities.
    • To choose the correct trigonometric substitution, you must consider the form of the expression under the square root.
    • Match the substitution with its corresponding expression
      x=x =asin(θ) a\sin(\theta) ↔️ a2x2\sqrt{a^{2} - x^{2}}
      x=x =atan(θ) a\tan(\theta) ↔️ \sqrt{a^{2} + x^{2}}
      x=x =asec(θ) a\sec(\theta) ↔️ x2a2\sqrt{x^{2} - a^{2}}
    • Steps to evaluate an integral using trigonometric substitution
      1️⃣ Identify the expression under the square root
      2️⃣ Choose the appropriate substitution
      3️⃣ Rewrite the integral in terms of θ\theta
      4️⃣ Evaluate the simplified integral
      5️⃣ Rewrite the result in terms of the original variable
    • Trigonometric substitution is only applicable to integrals with square roots.
    • Match the expression with its corresponding substitution
      a2x2\sqrt{a^{2} - x^{2}} ↔️ x=x =asin(θ) a\sin(\theta)
      \sqrt{a^{2} + x^{2}} ↔️ x=x =atan(θ) a\tan(\theta)
      x2a2\sqrt{x^{2} - a^{2}} ↔️ x=x =asec(θ) a\sec(\theta)
    • What trigonometric substitution should be used for \sqrt{a^{2} + x^{2}}?

      x=x =atan(θ) a\tan(\theta)
    • Trigonometric substitutions simplify integrals by eliminating square roots through trigonometric identities.
    • Match the expression with its appropriate substitution and trigonometric identity:
      a2x2\sqrt{a^{2} - x^{2}} ↔️ x=x =asin(θ) a\sin(\theta), 1sin2(θ)=1 - \sin^{2}(\theta) =cos2(θ) \cos^{2}(\theta)
      \sqrt{a^{2} + x^{2}} ↔️ x=x =atan(θ) a\tan(\theta), 1+1 +tan2(θ)= \tan^{2}(\theta) =sec2(θ) \sec^{2}(\theta)
      x2a2\sqrt{x^{2} - a^{2}} ↔️ x=x =asec(θ) a\sec(\theta), sec2(θ)1=\sec^{2}(\theta) - 1 =tan2(θ) \tan^{2}(\theta)
    • The expression a2x2\sqrt{a^{2} - x^{2}} requires the substitution x = a\sin(\theta)</latex> and uses the identity cos2(θ)=\cos^{2}(\theta) =1sin2(θ) 1 - \sin^{2}(\theta) to eliminate the square
    • The trigonometric substitution x=x =asec(θ) a\sec(\theta) is used to simplify expressions of the form x2a2\sqrt{x^{2} - a^{2}}.
    • When choosing a trigonometric substitution, the most important factor is the form of the expression under the square root.
    • What trigonometric identity is used when simplifying a2x2\sqrt{a^{2} - x^{2}} with x=x =asin(θ) a\sin(\theta)?

      cos2(θ)=\cos^{2}(\theta) =1sin2(θ) 1 - \sin^{2}(\theta)
    • What trigonometric identity is used when simplifying \sqrt{a^{2} + x^{2}} with x=x =atan(θ) a\tan(\theta)?

      sec2(θ)=\sec^{2}(\theta) =1+ 1 +tan2(θ) \tan^{2}(\theta)
    • The substitution x=x =asec(θ) a\sec(\theta) simplifies x2a2\sqrt{x^{2} - a^{2}} using the identity tan2(θ)=\tan^{2}(\theta) =sec2(θ)1 \sec^{2}(\theta) - 1, which eliminates the square root.
    • Trigonometric substitutions simplify integrals by applying trigonometric identities to eliminate square roots.
    • Steps to evaluate the integral 4x2dx\int \sqrt{4 - x^{2}} \, dx using trigonometric substitution:

      1️⃣ Identify the form a2x2\sqrt{a^{2} - x^{2}} with a=a =2 2 and choose x=x =2sin(θ) 2\sin(\theta)
      2️⃣ Find dx=dx =2cos(θ)dθ 2\cos(\theta) \, d\theta
      3️⃣ Substitute into the integral and simplify using cos2(θ)=\cos^{2}(\theta) =1sin2(θ) 1 - \sin^{2}(\theta)
      4️⃣ Use the identity cos2(θ)=\cos^{2}(\theta) =12(1+cos(2θ)) \frac{1}{2}(1 + \cos(2\theta))
      5️⃣ Express θ\theta and sin(2θ)\sin(2\theta) in terms of xx
      6️⃣ Write the final answer: 2arcsin(x2)+2\arcsin\left(\frac{x}{2}\right) +x24x2+ \frac{x}{2}\sqrt{4 - x^{2}} +C C
    • What is sin(2θ)\sin(2\theta) in terms of xx when x=x =2sin(θ) 2\sin(\theta)?

      x24x2\frac{x}{2}\sqrt{4 - x^{2}}
    • When rewriting the result of a trigonometric substitution, you must express θ\theta in terms of xx.