5.9 Connecting <latex>f'(x)</latex> and <latex>f''(x)</latex> with the Graph of <latex>f(x)</latex>

    Cards (392)

    • The first derivative * *f(x) f'(x) * * indicates the slope of the tangent to f(x)f(x) at any given point
    • If * *f(x)>0 f'(x) > 0 * *, then f(x)f(x) is increasing at xx.
    • If * * f'(x) <0 * *</latex>, then f(x)f(x) is decreasing
    • If * *f(x)= f'(x) =0 0 * *, then f(x)f(x) has a critical point at xx.
    • Match the condition with the behavior of f(x)f(x):

      f(x)>0f'(x) > 0 ↔️ Increasing
      f(x)<0f'(x) < 0 ↔️ Decreasing
      f(x)=f'(x) =0 0 ↔️ Local minimum, maximum, or inflection point
    • The first derivative * * f'(x) * *</latex> indicates the slope of the tangent to f(x)f(x) at any given point.
    • If * *f(x)>0 f'(x) > 0 * *, then f(x)f(x) is increasing at xx.
    • If * *f(x)<0 f'(x) < 0 * *, then f(x)f(x) is decreasing
    • If * *f(x)= f'(x) =0 0 * *, then f(x)f(x) has a local minimum, maximum, or inflection point.
    • Steps to analyze the behavior of f(x)f(x) using f(x)f'(x):

      1️⃣ Find * *f(x) f'(x) * *
      2️⃣ Set * *f(x)= f'(x) =0 0 * * to find critical points
      3️⃣ Determine intervals where * *f(x)>0 f'(x) > 0 * * or * *f(x)<0 f'(x) < 0 * *
      4️⃣ Identify increasing or decreasing behavior of f(x)f(x)
    • If * *f(x)>0 f'(x) > 0 * *, then f(x)f(x) is increasing at xx.
    • If * *f(x)>0 f'(x) > 0 * *, then f(x)f(x) is increasing
    • If * *f(x)<0 f'(x) < 0 * *, then f(x)</latex> is decreasing at xx.
    • If * *f(x)= f'(x) =0 0 * *, then f(x)f(x) has a local minimum, maximum, or inflection point.
    • Match the condition with the behavior of f(x)f(x):

      f(x)>0f'(x) > 0 ↔️ Increasing
      f(x)<0f'(x) < 0 ↔️ Decreasing
      f(x)=f'(x) =0 0 ↔️ Local minimum, maximum, or inflection point
    • The second derivative * * f''(x) * *</latex> describes the concavity of a function f(x)f(x).
    • If * *f(x)>0 f''(x) > 0 * *, then f(x)f(x) is concave up.
    • If * *f(x)<0 f''(x) < 0 * *, then f(x)f(x) is concave down
    • If * *f(x)= f''(x) =0 0 * *, f(x)f(x) may have an inflection point.
    • Match the condition with the concavity of f(x)f(x):

      f''(x) > 0</latex> ↔️ Concave up
      f(x)<0f''(x) < 0 ↔️ Concave down
      f(x)=f''(x) =0 0 ↔️ Inflection point possible
    • If * *f(x)>0 f''(x) > 0 * *, then f(x)f(x) is concave up.
    • If * *f(x)<0 f''(x) < 0 * *, then f(x)f(x) is concave down
    • If * *f(x)= f''(x) =0 0 * *, f(x)f(x) may have an inflection point.
    • What type of point may exist when f(x)=f''(x) =0 0?

      Inflection point
    • If f(x)>0f''(x) > 0, then f(x)f(x) is concave up at xx.
    • If f(x)<0f''(x) < 0, then f(x)</latex> is concave down at xx.
    • For f(x)=f(x) =x3 x^{3}, when is f(x)>0f''(x) > 0?

      x>0x > 0
    • If f(x)<0f''(x) < 0, what can you conclude about the concavity of f(x)f(x)?

      Concave down
    • If f(x)=f''(x) =0 0, then f(x)f(x) must have an inflection point at xx.

      False
    • A positive second derivative f(x)>0f''(x) > 0 indicates that f(x)</latex> is concave
    • For f(x)=f(x) =x3 x^{3}, what is f(x)f''(x)?

      6x6x
    • The second derivative f(x)f''(x) indicates the concavity of f(x)f(x).
    • If f(x)>0f''(x) > 0, then f(x)f(x) is concave up at xx.
    • Match the condition of f(x)f''(x) with the behavior of f(x)f(x):

      f(x)>0f''(x) > 0 ↔️ Concave up
      f(x)<0f''(x) < 0 ↔️ Concave down
      f(x)=f''(x) =0 0 ↔️ Possible inflection point
    • For f(x)=f(x) =x3 x^{3}, at what values of xx is f(x)f(x) concave up and concave down?

      Up: x>0x > 0, Down: x<0x < 0
    • The first derivative f(x)f'(x) represents the slope of the tangent to f(x)f(x).
    • If f(x)>0f'(x) > 0, then f(x)f(x) is increasing at xx.
    • For f(x)=f(x) =x24x+ x^{2} - 4x +3 3, what is f(x)f'(x)?

      2x42x - 4
    • At x=x =2 2, f(x)=f'(x) =0 0 for f(x)=f(x) =x24x+ x^{2} - 4x +3 3, indicating a local minimum at (2,1)(2, - 1).
    • Critical points of f(x)f(x) occur only where f(x)=f'(x) =0 0.

      False