3.1 Vector Algebra

Cards (53)

  • Vectors are represented using boldface letters or an arrow over the letter
  • Vectors in two dimensions have three components
    False
  • What is the formula for adding two vectors a\mathbf{a} and b\mathbf{b}?

    a+\mathbf{a} +b= \mathbf{b} = \begin{pmatrix} a_{1} +b1a2+ b_{1} \\ a_{2} +b2a3+ b_{2} \\ a_{3} + b_{3} \end{pmatrix}
  • Vector addition is performed by adding corresponding components
  • Vector subtraction involves subtracting corresponding components
  • What is the formula for scalar multiplication of a vector a\mathbf{a} by a scalar kk?

    k\mathbf{a} = \begin{pmatrix} ka_{1} \\ ka_{2} \\ ka_{3} \end{pmatrix}</latex>
  • Vector addition is commutative, meaning \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}
  • Vector addition is not commutative
    False
  • What are the three basic vector operations?
    Addition, subtraction, scalar multiplication
  • Steps to perform vector addition
    1️⃣ Ensure the vectors have the same dimension
    2️⃣ Add the corresponding components together
  • For vectors \mathbf{a} = \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix}</latex> and b=\mathbf{b} =(b1b2) \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}, their sum is \begin{pmatrix} a_{1} + b_{1} \\ a_{2} + b_{2} \end{pmatrix}
  • The sum of (23)\begin{pmatrix} 2 \\ 3 \end{pmatrix} and (11)\begin{pmatrix} 1 \\ - 1 \end{pmatrix} is (32)\begin{pmatrix} 3 \\ 2 \end{pmatrix}
  • What is the formula for adding two vectors a\mathbf{a} and b\mathbf{b}?

    a+\mathbf{a} +b= \mathbf{b} = \begin{pmatrix} a_{1} +b1a2+ b_{1} \\ a_{2} + b_{2} \end{pmatrix}
  • Vector addition is commutative.
  • To perform vector addition, ensure the vectors have the same dimension
  • Steps to perform vector addition
    1️⃣ Ensure the vectors have the same dimension.
    2️⃣ Add the corresponding components together.
  • What does scalar multiplication change in a vector?
    Magnitude
  • Scalar multiplication reverses the direction of a vector if the scalar is negative.
  • The magnitude of a vector is scaled by the scalar's absolute value
  • What is the formula for subtracting two vectors a\mathbf{a} and b\mathbf{b}?

    \mathbf{a} - \mathbf{b} = \begin{pmatrix} a_{1} - b_{1} \\ a_{2} - b_{2} \end{pmatrix}</latex>
  • Subtracting a vector b\mathbf{b} from a\mathbf{a} is equivalent to adding b- \mathbf{b} to a\mathbf{a}.
  • What does a boldface letter represent in vector notation?
    A vector without components
  • Match the vector notation with its description:
    Boldface Letter ↔️ Represents a vector without components
    Arrow Notation ↔️ Another way to denote a vector
    Component Notation ↔️ Lists components within brackets
  • What is the commutative property of vector addition?
    \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}</latex>
  • What is the formula for adding two vectors a=\mathbf{a} =(a1a2) \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} and b=\mathbf{b} =(b1b2) \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}?

    a+\mathbf{a} +b= \mathbf{b} = \begin{pmatrix} a_{1} +b1a2+ b_{1} \\ a_{2} + b_{2} \end{pmatrix}
  • Vector addition is a commutative operation.
  • To perform vector addition, we add corresponding components
  • What is the result of adding \mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}</latex> and b=\mathbf{b} =(11) \begin{pmatrix} 1 \\ - 1 \end{pmatrix}?

    a+\mathbf{a} +b= \mathbf{b} =(32) \begin{pmatrix} 3 \\ 2 \end{pmatrix}
  • Adding two vectors involves summing their corresponding entries.
  • Match the vector operation with its formula:
    Vector Addition ↔️ a+\mathbf{a} +b \mathbf{b}
    Vector Subtraction ↔️ ab\mathbf{a} - \mathbf{b}
  • What is the result of subtracting a=\mathbf{a} =(23) \begin{pmatrix} 2 \\ 3 \end{pmatrix} and b=\mathbf{b} =(11) \begin{pmatrix} 1 \\ - 1 \end{pmatrix}?

    ab=\mathbf{a} - \mathbf{b} =(14) \begin{pmatrix} 1 \\ 4 \end{pmatrix}
  • Vector addition is commutative, meaning the order of addition does not affect the result.
  • What is the formula for vector addition?
    a+\mathbf{a} +b= \mathbf{b} = \begin{pmatrix} a_{1} +b1a2+ b_{1} \\ a_{2} + b_{2} \end{pmatrix}
  • What does it mean for vector addition to be commutative?
    a+\mathbf{a} +b= \mathbf{b} =b+ \mathbf{b} +a \mathbf{a}
  • What is the formula for vector addition again?
    a+\mathbf{a} +b= \mathbf{b} = \begin{pmatrix} a_{1} +b1a2+ b_{1} \\ a_{2} + b_{2} \end{pmatrix}
  • What are the distributive properties of scalar multiplication?
    k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}</latex> and (k+l)a=(k + l)\mathbf{a} =ka+ k\mathbf{a} +la l\mathbf{a}
  • In scalar multiplication, the direction of the vector reverses if the scalar is negative.
  • What is the formula for vector subtraction?
    ab=\mathbf{a} - \mathbf{b} =(a1b1a2b2) \begin{pmatrix} a_{1} - b_{1} \\ a_{2} - b_{2} \end{pmatrix}
  • The magnitude of a vector is its length or distance from the origin to the vector's endpoint.
  • What is the formula for the magnitude of a 2D vector?
    |\mathbf{v}| = \sqrt{v_{1}^{2} + v_{2}^{2}}</latex>