Save
ApEng
exam
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Aleena
Visit profile
Cards (54)
Work
W =
m g h
(Inclined plane) W =
F
d
sin
θ
\theta
θ
Kinetic energy
KE
=
1
2
\frac{1}{2}
2
1
mv
2
^2
2
Potential
energy
PE
=
mgh
Power
P =
w
/
t
=
Fv
P =
Fvcos0
Momentum
p
=
mv
Centripetal acceleration
a =
v
2
^2
2
/
r
=
r
ω
2
\omega^2
ω
2
Centripetal force
F =
mv
2
^2
2
/
r
=
m
ω
2
\omega^2
ω
2
r
Circular motion
v
=
r
ω
\omega
ω
ω
\omega
ω
=
θ
\theta
θ
/
t
Inertia
I =
mr
2
^2
2
Torque
τ
\tau
τ
=
rFsin
θ
\theta
θ
τ
\tau
τ
=
I
α
\alpha
α
Centre of gravity
Xcg =
∑
X
i
A
i
∑
A
i
\frac{\sum_{ }^{ }XiAi}{\sum_{ }^{ }Ai}
∑
A
i
∑
X
i
A
i
Pressure
P =
ρ
\rho
ρ
gh
Gauge pressure
Pgauge
=
Pabs
-
Patm
Buoyant force
Fb
=
ρ
\rho
ρ
fluid
gV
Force against horizontal wall
F =
ρ
\rho
ρ
ghA
Force against vertical wall
F =
ρ
\rho
ρ
gbh
⋅
\cdot
⋅
h/2
Vector magnitude
∣
V
∣
=
\left|V\right|\ =
∣
V
∣
=
V
x
2
+
V
y
2
\ \sqrt{Vx^2\ +\ Vy^2}
V
x
2
+
V
y
2
Unit vector
=
V
/
∣
V
∣
\left|V\right|
∣
V
∣
Angle of vector
θ
=
\theta\ =
θ
=
tan
−
1
(
Y
X
)
\ \tan^{-1}\left(\frac{Y}{X}\right)
tan
−
1
(
X
Y
)
Cosine (inclined)
R
2
^2
2
=
a
2
+
a^2+
a
2
+
b
2
−
2
a
b
cos
(
180
−
θ
)
b^2\ -\ 2ab\cos\left(180-\theta\right)
b
2
−
2
ab
cos
(
180
−
θ
)
Sine (direction)
α
=
\alpha\ =
α
=
sin
−
1
(
b
sin
(
180
−
θ
)
R
)
\ \sin^{-1}\left(\frac{b\sin\left(180-\theta\right)}{R}\right)
sin
−
1
(
R
b
s
i
n
(
180
−
θ
)
)
Newton's 2nd law
F
=
ma
Friction
f
=
μ
R
\mu R
μ
R
Weight
W =
mg
Friction (inclined plane)
R
=
mgcos
θ
\theta
θ
f
=
mgcos
θ
μ
\theta\mu
θ
μ
Kinematics
v
=
u
+
at
s =
ut
+
1
2
\frac{1}{2}
2
1
at
2
^2
2
v
2
^2
2
=
u
2
^2
2
+
2as
Projectiles
Horizontal
V =
Xcos
θ
\theta
θ
Vertical
V =
Xsin
θ
\theta
θ
Range (projectiles)
R =
v
2
sin
(
2
θ
)
g
\frac{v^2\sin\left(2\theta\right)}{g}
g
v
2
s
i
n
(
2
θ
)
Projectiles
X =
vtcos
θ
\theta
θ
Y =
vtsin
θ
\theta
θ
-
1
2
\frac{1}{2}
2
1
gt
2
^2
2
Max height of projectile
h =
u
2
^2
2
/
2g
v =
u
-
gt
Tension
Body moving upwards
T = W + F = mg + ma
Body moving downwards
T
= W - F = mg - ma
Distance an object falls under gravity
s
=
1
2
\frac{1}{2}
2
1
gt
2
^2
2
Coefficient of restitution
e =
v
2
−
v
1
u
1
−
u
2
\frac{v2\ -\ v1}{u1\ -\ u2}
u
1
−
u
2
v
2
−
v
1
Conservation of momentum
m1u1 + m2u2 = m1v1 + m2v2
Magnitude of impulse (
Ns
)
J =
F
Δ
\Delta
Δ
t
=
Δ
\Delta
Δ
p
=
m
(
v-u
)
(p = momentum)
Centripetal force again
tan
θ
\theta
θ
=
v
2
g
R
\frac{v^2}{gR}
g
R
v
2
Centripetal force in horizontal (radial) direction
v
2
R
\frac{v^2}{R}
R
v
2
=
g
(
tan
θ
\theta
θ
+
μ
sec
θ
\mu\sec\theta
μ
sec
θ
)
Lami's theorem
P
sin
α
\frac{P}{\sin\alpha}
s
i
n
α
P
=
Q
sin
β
\frac{Q}{\sin\beta}
s
i
n
β
Q
=
R
sin
χ
\frac{R}{\sin\chi}
s
i
n
χ
R
Projectiles time of flight
T
=
2
V
sin
θ
g
\frac{2V\sin\theta}{g}
g
2
V
s
i
n
θ
Projectiles max range
R
=
v
2
^2
2
/
g
See all 54 cards