AI Made - Part 2 - Week 12 to 13

Cards (22)

  • What is summation?
    A sum of all terms in each pattern
  • How is summation denoted?
    By the symbol Σ (sigma)
  • How is the summation of x sub i from 1 to 10 expressed?
    As σi=110xi\sigma_{i=1}^{10} x_i
  • What does the notation σi=1nfixi\sigma_{i=1}^{n} f_i x_i expand to?

    • f1x1+f_1 x_1 +f2x2+ f_2 x_2 +f3x3+ f_3 x_3 ++ \ldots +fnxn f_n x_n
  • How does the notation σi=315(fi+xi)2\sigma_{i=3}^{15} (f_i + x_i)^2 expand?

    • (f3+x3)2+(f_3 + x_3)^2 +(f4+x4)2+ (f_4 + x_4)^2 ++ \ldots +(f15+ (f_{15} +x15)2 x_{15})^2
  • What does σi=310xi+\sigma_{i=3}^{10} x_i +σi=120yi \sigma_{i=1}^{20} y_i represent?

    • (x3+x4++x10)+(x_3 + x_4 + \ldots + x_{10}) +(y1+y2++y20) (y_1 + y_2 + \ldots + y_{20})
  • How is the summation of Q1 to Q6 expressed?
    • σi=16Qi\sigma_{i=1}^{6} Q_i
  • How is the summation of b5 to b9 expressed?
    • σi=59bi\sigma_{i=5}^{9} b_i
  • How is the summation of (5 + A3) to (5 + A7) expressed?
    • σi=37(5+Ai)\sigma_{i=3}^{7} (5 + A_i)
  • What is the expanded form of σi=510Ci\sigma_{i=5}^{10} C_i?

    • C5+C_5 +C6+ C_6 +C7+ C_7 +C8+ C_8 +C9+ C_9 +C10 C_{10}
  • What is the expanded form of σi=37yi2+\sigma_{i=3}^{7} y_i^2 +3 3?

    • y32+y_3^2 +y42+ y_4^2 +y52+ y_5^2 +y62+ y_6^2 +y72+ y_7^2 +3 3
  • What is the expanded form of σi=15xi+\sigma_{i=1}^{5} x_i +yi3 y_i^3?

    • x1+x_1 +x2+ x_2 +x3+ x_3 +x4+ x_4 +x5+ x_5 +y13+ y_1^3 +y23+ y_2^3 +y33+ y_3^3 +y43+ y_4^3 +y53 y_5^3
  • What is the expanded form of σi=1129Di\sigma_{i=1}^{12} 9D_i?

    • 9D1+9D_1 +9D2+ 9D_2 ++ \ldots +9D12 9D_{12}
  • What is the expanded form of σi=1015xi3yi2\sigma_{i=10}^{15} x_i - 3y_i^2?

    • x10+x_{10} +x11+ x_{11} +x12+ x_{12} +x13+ x_{13} +x14+ x_{14} +x153(y102+ x_{15} - 3(y_{10}^2 +y112+ y_{11}^2 +y122) y_{12}^2)
  • How can you express x2y2+x_2 y_2 +x3y3+ x_3 y_3 ++ \ldots +x6y6 x_6 y_6 in summation notation?

    • σi=26xiyi\sigma_{i=2}^{6} x_i y_i
  • How can you express (c3d3)2+(c_3 d_3)^2 +(c4d4)2+ (c_4 d_4)^2 ++ \ldots +(c20d20)2 (c_{20} d_{20})^2 in summation notation?

    • σi=320(cidi)2\sigma_{i=3}^{20} (c_i d_i)^2
  • How can you express (4d1)2+(4 - d_1)^2 +(4d2)2+ (4 - d_2)^2 ++ \ldots +(4d10)2 (4 - d_{10})^2 in summation notation?

    • σi=110(4di)2\sigma_{i=1}^{10} (4 - d_i)^2
  • How can you express f1(x1y)2+f_1(x_1 - y)^2 +f2(x2y)2+ f_2(x_2 - y)^2 ++ \ldots +f30(x30y)2 f_{30}(x_{30} - y)^2 in summation notation?

    • σi=130fi(xiy)2\sigma_{i=1}^{30} f_i (x_i - y)^2
  • How can you express x1+x_1 +x2+ x_2 ++ \ldots +x1515 x_{15} - 15 in summation notation?

    • σi=115xi15\sigma_{i=1}^{15} x_i - 15
  • How can you express x10+x_{10} +x11+ x_{11} ++ \ldots +x20y15+ x_{20} - y_{15} +y16+ y_{16} ++ \ldots +y30 y_{30} in summation notation?

    • σi=1020xiσj=1530yj\sigma_{i=10}^{20} x_i - \sigma_{j=15}^{30} y_j
  • What is the average age of boys based on the given pairs?
    Sum of boys' ages divided by 5
  • What is the average age of girls based on the given pairs?
    Sum of girls' ages divided by 5