history of math

Cards (67)

  • Hieroglyphic writing
    For monumental inscriptions
  • Hieratic
    Cursive writing, done with a brush and ink on papyrus
  • Scribes
    People in ancient Egypt (usually men) who learned to read and write
  • Amenhotep, an Egyptian high official, and scribe (fifteenth century BCE)
  • Two papyri containing collections of mathematical problems with their solutions: Rhind Mathematical Papyrus, Moscow Mathematical Papyrus
  • Unit Fraction
    A fraction of the form 1/n, where n is an integer
  • Egyptian Calendar
    Twelve months of thirty days each, plus five feast days
  • Sundial
    An instrument that uses the position of the sun to tell the time
  • Sexagesimal system
    Base 60 number system
  • Pythagorean triples
    (a, b, c) with a^2 + b^2 = c^2
  • Babylonian Mathematics was first derived from two tablets containing the square of numbers from 1 to 60 and cubes of numbers from 1 to 32
  • The Plimpton 322 clay tablet, with numbers written in cuneiform script
  • Eudemus (century B.C.), a member of Aristotle's school wrote histories of arithmetic, geometry, and astronomy (lost)
  • Theophrastus (c. 372-c. 287 B.C.) wrote a history of physics (lost)
  • Pappus (late cent A.D.) wrote the Mathematical Collection, an account of classical mathematics from Euclid to Ptolemy (extant)
  • Proclus (A.D. 410-485) wrote the Commentary, treating Book I of Euclid, and contains quotations due to Eudemus (extant)
  • Ionian School
    Founded by THALES for philosophy and the philosophy of science
  • Pythagorean School
    Founded by PYTHAGORAS, contributed to philosophy, the study of proportion, plane and solid geometry, number theory, the theory of proof, and the discovery of incommensurables
  • Eleatic School
    Led by ZENO, from the city of Elea, known for Zeno's paradoxes
  • Platonic School
    Founded by PLATO, members include Menaechmus, Dinostratus, and Theaetetus
  • Menaechmus
    Made the whole of geometry more perfect, inventor of the conics
  • Plato
    Not a mathematician, but a strong advocate of all of mathematics, believed that the perfect ideals of physical objects are the reality
  • Justinian, a Christian emperor, closed the Platonic School because he believed that the teachings were "pagan and perverse learning"
  • School of Eudoxus
    Founded by EUDOXUS, developed the theory of proportion, partly to account for and study the incommensurables
  • School of Aristotle
    Axioms include the laws of logic, and the law of contradiction. Postulates need not be self-evident, but their truth must be sustained by the results derived from them.
  • Thales (Thales of Miletus)
    First known Greek philosopher, scientist, and mathematician, although his occupation was that of an engineer
  • Pythagoras (Pythagoras of Samos, Ionia)

    First pure mathematician, known for the Pythagorean theorem and other contributions
  • Anaxagoras (Anaxagoras of Clazomenae)

    Applied geometry to the study of astronomy
  • Euclid (Euclid of Alexandria)

    Most prominent ancient mathematician, known for the famous work called "The Elements", as well as works on optics and mathematical astronomy
  • Plato
    Considered mathematical objects as perfect forms, concentrated on the idea of 'proof' and insisted on accurate definitions and clear hypothesis
  • Numbers
    Sankheya (countable), Asankheya (uncountable), Anant (infinite)
  • Oracle bone script
    Source of our knowledge of early Chinese number systems
  • Confucius
    Most famous philosopher during 6th century BCE
  • Zhangjiashan books were discovered near his tomb and mathematics text was written in bamboo strips (Suan shu shu), opened in early 1984
  • Suan shu shu
    (Book of Numbers and Computation), is the earliest extant text of Chinese mathematics
  • Zhou Bi Suan Jing
    The oldest suspected mathematical text, contains the earliest statement of Pythagoras' Theorem as well as simple rules for computing fractions and conducting arithmetic
  • Gou gu
    Other proof of Pythagorean theorem
  • Jiuzhang suanshu
    Nine Chapters on the Mathematical Art, a compendium of all existing Chinese mathematical knowledge up until the third century
  • Liu Hui
    Made contributions to mathematics, including accurate estimates of π, made similarly to Archimedes
  • Rod Numerals
    The second dominant form of enumeration dating from around 300 BCE, with Zongs for units, 100's, 10000's, etc and Hengs for 10's, 1000's, 100000's, etc