Roots Of Polyomials

Cards (8)

  • Roots Of Quadratic
    • alpha + beta = -b/a
    • alpha*beta = c/a
  • Roots Of A Cubic
    • alpha + beta + gamma = -b/a
    • (alpha*beta) + (beta*gamma) + (gamma*alpha) = c/a
    • alpha*beta*gamma = -d/a
  • Abbreviations
    α=\sum\alpha =b/a -b/a
    αβ=\sum\alpha\beta =c/a c/a
    αβγ=\sum\alpha\beta\gamma =d/a -d/a
  • Sum Of Squares
    α2=\sum\alpha^2 =(α)22(αβ) (\sum\alpha)^2 - 2(\sum\alpha\beta)
  • Sum Of Cubes
    α2=\sum\alpha^2 =(α)33αβα+ (\sum\alpha)^3 - 3\sum\alpha\beta\sum\alpha +3αβγ 3\alpha\beta\gamma
  • Transformations Of Roots
    If roots are a(alpha) + b, set w = ax + b
    Rearrange for x and substitute in
  • Parametric (x-axis)

    πy2dx/dtdt\pi\int y^2 dx/dt dt
  • Parametric (y-axis)

    πx2dy/dtdt\pi\int x^2 dy/dt dt