Save
Core Pure
Roots Of Polyomials
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Bunzy :3
Visit profile
Cards (8)
Roots Of Quadratic
alpha +
beta
=
-b/a
alpha*beta
=
c/a
Roots Of A Cubic
alpha +
beta
+
gamma
= -b/a
(
alpha*beta
) + (beta*gamma) + (
gamma*alpha
) = c/a
alpha*beta*gamma
=
-d/a
Abbreviations
∑
α
=
\sum\alpha =
∑
α
=
−
b
/
a
-b/a
−
b
/
a
∑
α
β
=
\sum\alpha\beta =
∑
α
β
=
c
/
a
c/a
c
/
a
∑
α
β
γ
=
\sum\alpha\beta\gamma =
∑
α
β
γ
=
−
d
/
a
-d/a
−
d
/
a
Sum Of Squares
∑
α
2
=
\sum\alpha^2 =
∑
α
2
=
(
∑
α
)
2
−
2
(
∑
α
β
)
(\sum\alpha)^2 - 2(\sum\alpha\beta)
(
∑
α
)
2
−
2
(
∑
α
β
)
Sum Of
Cubes
∑
α
2
=
\sum\alpha^2 =
∑
α
2
=
(
∑
α
)
3
−
3
∑
α
β
∑
α
+
(\sum\alpha)^3 - 3\sum\alpha\beta\sum\alpha +
(
∑
α
)
3
−
3
∑
α
β
∑
α
+
3
α
β
γ
3\alpha\beta\gamma
3
α
β
γ
Transformations Of Roots
If roots are a(
alpha
)
+
b, set w = ax + b
Rearrange for x and substitute in
Parametric
(
x-axis
)
π
∫
y
2
d
x
/
d
t
d
t
\pi\int y^2 dx/dt dt
π
∫
y
2
d
x
/
d
t
d
t
Parametric
(
y-axis
)
π
∫
x
2
d
y
/
d
t
d
t
\pi\int x^2 dy/dt dt
π
∫
x
2
d
y
/
d
t
d
t