Bioche new

Subdecks (1)

Cards (202)

  • Lipidgebundene Proteine
    ziel: lokal Konz prot ermöglichen unter bioche prozesse
    Prenylierung: c term tetrapeptid mit farnesyl oder geranyl geranyl rest, entsteht thioetherbdg sehr stabil und irrev
    FS acylierung:
    • Myristoylisierung: macht myristoyl prot, stabil (Amid), selten co-translational
    • palmitoylisierung: palmitoyl prot, thioesterbdg, rev, häufig, post-translational
    • GPI linker: c term prot, nur aussenseite membran
  • Periphere membranprot
    Monotropisch= nur auf einen seite
    an membran selbst oder integrale prot
    int:
    • ionische bdg & H Brücke
    • Lockere verankerung über amphipatische helix
    • hydrophobe patches
    schon milden Bedingungen= dissoziation von membran
    amphipatische alpha helix —> helical wheel zeichnung
  • Import FS
    FS translokase CD36: folgt grad, multifunktional
    FS transportprotein: benutzt ATP, auch gegen grad, mit acyl coA synthethase assoziert
  • PLP
    Transaminase
    decarboxylase
    DH
    Racemase
  • Glycogen Synthase Regulation
    Insulin activates PP1 & inhibits GSK3 → active glycogen synthesis, while glucagon & epinephrine inhibit PP1 & activate GSK3 → inactive glycogen synthesis
  • Glycogen Synthase Priming Site
    PKA-mediated phosphorylation of the priming site creates a binding site for UDP-glucose, activating glycogen synthase and regulating its activity
  • Glycogen synthesis
    1. Glucose converted to glucose 6-phosphate by hexokinase
    2. Glucose 6-phosphate converted to glucose 1-phosphate by phosphoglucomutase
    3. Glucose 1-phosphate becomes UDP-glucose
    4. Glycogen synthase elongates glycogen chain
  • Glycogen degradation
    1. Glycogen phosphorylase breaks alpha 1-4 linkages forming glucose 1-phosphate
    2. Phosphoglucomutase converts glucose 1-phosphate to glucose 6-phosphate
    3. Glucose 6-phosphate converted to glucose by glucose 6-phosphatase
  • Glycogen phosphorylase
    Exists in active (phosphorylase a) and less active (phosphorylase b) forms
  • Activation of glycogen phosphorylase
    1. Phosphorylase b kinase phosphorylates phosphorylase b to convert it to active phosphorylase a
    2. Requires 2 ATP
  • Glycogen phosphorylase activation

    • Activated by epinephrine and glucagon
    • Triggered by increased cyclic AMP levels
  • Cyclic AMP
    Intracellular second messenger produced from ATP
  • Increased cyclic AMP
    Activates protein kinase A
  • Protein kinase A
    Activates phosphorylase b kinase
  • Phosphorylase b kinase
    Converts phosphorylase b to active phosphorylase a
  • Increased ATP levels

    Inhibit glycogen phosphorylase by blocking allosteric site for AMP
  • Deactivation of glycogen phosphorylase
    Phosphor protein phosphatase removes phosphate group, converting phosphorylase a to phosphorylase b
  • Glycogen synthase
    Exists in active (dephosphorylated) and inactive (phosphorylated) forms
  • Activation of glycogen synthase
    Phosphor protein phosphatase 1 (PP1) dephosphorylates and activates glycogen synthase a
  • Insulin, glucose, glucose 6-phosphate
    Activate PP1 to activate glycogen synthase
  • Glucagon, epinephrine
    Inactivate glycogen synthase by activating glycogen synthase kinase 3
  • Regulation of carbohydrate metabolism in liver
    High blood glucose: Insulin triggers glucose uptake, glycolysis, and glycogen synthesis
    Low blood glucose: Glucagon triggers glycogen breakdown and inhibits glycolysis
  • Glycogen synthase and glycogen phosphorylase are allosterically and hormonally regulated
  • Glycogen phosphorylase vs synthase
    Phosphorylase: aktiviert durch adrenaline, AMP und Ca2+, aktiv wenn 2x phosphoryliert
    synthase: inaktive wenn 3x phosphoryliert, dephos. Durch PP1 und phos durch GSK3
  • Protein abbau
    1 ubiquiniert
    2 proteasome
    3 peptidase
  • Ring finger domain (RFD) recognizes specific amino acid sequences or posttranslational modifications on target proteins
  • Amino acid
    Contains an amino group, carboxylic acid, and a unique side chain
  • Amino acid catabolism
    1. Removing the amino group
    2. Separating the carbon skeletons
  • Transamination
    Process of transferring the amino group from an amino acid to an alpha-keto acid
  • Ammonia
    Very toxic and causes severe damage and complications
  • Transamination reaction
    1. Amino acid transfers amino group to alpha-ketoglutarate
    2. Forming pyruvate and glutamate
  • Glutamate has the amino group
    • Glutamate moves to mitochondrial matrix
    • Glutamate dehydrogenase removes amino group via oxidative deamination
  • Fates of carbon skeletons from amino acid degradation
    • Gluconeogenesis
    • Ketogenesis
    • Entering citric acid cycle
  • Low ATP levels
    Pyruvate converted to acetyl-CoA and enters citric acid cycle
  • High ATP levels
    Pyruvate converted to oxaloacetate and diverted to gluconeogenesis
  • Amino acids that can enter citric acid cycle
    • Via alpha-ketoglutarate
    • Via succinyl-CoA
    • Via fumarate
    • Via oxaloacetate
  • Ketogenic amino acids
    Can be converted into ketone bodies
  • Glucogenic amino acids
    Can be converted into glucose
  • Proteins are one of three organic fuels, along with glucose from carbohydrates and fatty acids from fats
  • Amino acids cannot be stored, so we need to supply them from the diet for protein synthesis