Save
ap calc ab
trig identities
Save
Share
Learn
Content
Leaderboard
Learn
Created by
raizel
Visit profile
Cards (17)
s
i
n
θ
sin θ
s
in
θ
1
/
c
s
c
θ
1 / csc θ
1/
csc
θ
c
s
c
θ
csc θ
csc
θ
1
/
s
i
n
θ
1 / sin θ
1/
s
in
θ
c
o
s
θ
cos θ
cos
θ
1
/
s
e
c
θ
1/sec θ
1/
sec
θ
t
a
n
θ
tan θ
t
an
θ
s
i
n
θ
/
c
o
s
θ
=
sin θ/cos θ =
s
in
θ
/
cos
θ
=
1
/
c
o
t
θ
1/cot θ
1/
co
tθ
c
o
t
θ
cot θ
co
tθ
c
o
s
θ
/
s
i
n
θ
=
cos θ/sin θ =
cos
θ
/
s
in
θ
=
1
/
t
a
n
θ
1/tan θ
1/
t
an
θ
Pythagorean Identity
s
i
n
2
θ
+
sin^2 θ +
s
i
n
2
θ
+
c
o
s
2
θ
=
cos^2 θ =
co
s
2
θ
=
1
1
1
t
a
n
2
θ
+
tan^2 θ +
t
a
n
2
θ
+
1
1
1
s
e
c
2
θ
sec^2 θ
se
c
2
θ
c
o
t
2
θ
+
cot^2 θ+
co
t
2
θ
+
1
1
1
c
s
c
2
θ
csc^2 θ
cs
c
2
θ
s
i
n
(
α
+
β
)
sin(α + β )
s
in
(
α
+
β
)
s
i
n
(
α
)
c
o
s
(
β
)
+
sin(α)cos(β ) +
s
in
(
α
)
cos
(
β
)
+
c
o
s
(
α
)
s
i
n
(
β
)
cos(α)sin(β)
cos
(
α
)
s
in
(
β
)
s
e
c
θ
sec θ
sec
θ
1
/
c
o
s
θ
1 / cos θ
1/
cos
θ
s
i
n
(
α
−
β
)
sin(α-β )
s
in
(
α
−
β
)
s
i
n
(
α
)
c
o
s
(
β
)
−
c
o
s
(
a
)
s
i
n
(
β
)
sin(α)cos(β)-cos(a)sin( β)
s
in
(
α
)
cos
(
β
)
−
cos
(
a
)
s
in
(
β
)
c
o
s
(
α
+
β
)
cos(α+β)
cos
(
α
+
β
)
c
o
s
(
a
)
c
o
s
(
β
)
−
s
i
n
(
a
)
s
i
n
(
β
)
cos(a)cos(β)-sin(a)sin(β)
cos
(
a
)
cos
(
β
)
−
s
in
(
a
)
s
in
(
β
)
c
o
s
(
α
−
β
)
cos(α-β)
cos
(
α
−
β
)
c
o
s
(
α
)
c
o
s
(
β
)
+
cos(α)cos(β) +
cos
(
α
)
cos
(
β
)
+
s
i
n
(
α
)
s
i
n
(
β
)
sin(α)sin(β)
s
in
(
α
)
s
in
(
β
)
s
i
n
2
θ
sin 2 θ
s
in
2
θ
2
s
i
n
θ
c
o
s
θ
2sin θcos θ
2
s
in
θ
cos
θ
c
o
s
2
θ
cos 2 θ
cos
2
θ
c
o
s
2
θ
−
s
i
n
2
θ
=
cos^2 θ-sin^2 θ=
co
s
2
θ
−
s
i
n
2
θ
=
2
c
o
s
2
θ
−
1
=
2cos^2 θ-1=
2
co
s
2
θ
−
1
=
1
−
2
s
i
n
2
θ
1-2sin^2 θ
1
−
2
s
i
n
2
θ
c
o
s
2
θ
cos^2 θ
co
s
2
θ
1
+
1 +
1
+
c
o
s
2
θ
/
2
cos2 θ / 2
cos
2
θ
/2
s
i
n
2
θ
sin^2 θ
s
i
n
2
θ
1
−
c
o
s
2
θ
/
2
1-cos2 θ/2
1
−
cos
2
θ
/2