Transformada de Laplace

Cards (20)

  • F(s)=F(s)=L{f(t)}=\mathscr{L}\{f(t)\}=
    limb0bestf(t)dt\lim_{b \to \infty} \int_{0}^{b}e^{-st}f(t)dt
  • L{1}=\mathscr{L}\{1\}=
    1s  (s>0)\frac{1}{s} \space\space (s>0)
  • L{eat}=\mathscr{L}\{e^{at}\}=
    1sa  (s>a)\frac{1}{s-a} \space\space(s>a)
  • L{sin(at)}=\mathscr{L}\{sin(at)\}=
    as2+a2  (s>0)\frac {a}{s^2+a^2} \space\space(s>0)
  • L{cos(at)}=\mathscr{L}\{cos(at)\}=
    ss2+a2  (s>0)\frac{s}{s^2+a^2} \space\space (s>0)
  • L{t}=\mathscr{L}\{t\}=
    1s2  (s>0)\frac{1}{s^2}\space\space(s>0)
  • L{tn1}=\mathscr{L}\{t^{n-1}\}=
    (n1)!sn  (s>0)\frac{(n-1)!}{s^{n}}\space\space(s>0)
  • L{t}=\mathscr{L}\{\sqrt{t}\}=
    12πs32  (s>0)\frac{1}{2} \sqrt{\pi} s^\frac{3}{2}\space\space(s>0)
  • L{1t}=\mathscr{L}\{\frac{1}{\sqrt{t}}\}=
    πs12  (s>0) \sqrt{\pi} s^\frac{1}{2}\space\space(s>0)
  • L{tn12}=\mathscr{L}\{t^{n-\frac{1}2{}}\}=
    (1)(3)(5)...(2n1)π2nsn12  (s>0)\frac{(1)(3)(5)...(2n-1)\sqrt{\pi}}{2^{n}}\cdot s^{-n-\frac{1}{2}}\space\space(s>0)
  • L{senh(at)}=\mathscr{L}\{senh(at)\}=
    as2a2   (s>a)\frac{a}{s^{2}-a^{2}}\space\space\space(s>|a|)
  • L{cosh(at)}=\mathscr{L}\{cosh(at)\}=
    ss2a2   (s>a)\frac{s}{s^2-a^2}\space\space\space(s>|a|)
  • L{tsen(at)}=\mathscr{L}\{tsen(at)\}=
    2as(s2+a2)2   (s>0)\frac {2as}{(s^2+a^2)^2}\space\space\space(s>0)
  • L{tcos(at)}=\mathscr{L}\{tcos(at)\}=
    s2a2(s2+a2)2   (s>0)\frac{s^2-a^2}{(s^2+a^2)^2}\space\space\space(s>0)
  • L{tn1eat}=\mathscr{L}\{t^{n-1}e^{at}\}=   ;(n=1,2...)\space\space\space;(n=1,2...)
    (n1)!(sa)n   (s>a)\frac{(n-1)!}{(s-a)^n}\space\space\space(s>a)
  • L{sen(at)atcos(at)}=\mathscr{L}\{sen(at)-atcos(at)\}=
    2a3(s2+a2)2  (s>0)\frac{2a^3}{(s^2+a^2)^2}\space\space(s>0)
  • L{f(t)}=\mathscr{L}\{f(t)\}=
    F(s)F(s)
  • L{f(t)}=\mathscr{L}\{f'(t)\}=
    sF(s)f(0)sF(s)-f(0)
  • L{f(t)}=\mathscr{L}\{f''(t)\}=
    s2F(s)sf(0)f(0)s^{2}F(s)-sf(0)-f'(0)
  • L{f(t)}=\mathscr{L}\{f'''(t)\}=
    s3F(0)s2f(0)sf(0)f(0)s^{3}F(0)-s^{2}f(0)-sf'(0)-f''(0)