Triangle Sum theorem - The sum of the measure of the interior angles of a triangle is 180°
Exterior Angle Theorem - The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non adjacent interior angles
Two polygons are congruent when All corresponding sides are congruent AND All corresponding angles are congruent
Reflexive Property of Triangle Congruence - For any triangle △ABC, △ABC is congruent to △ABC≅△ABC
Symmetric Properties of Triangle Congruence - If △ABC≅△DEF, then △DEF≅△ABC
Transitive Property of Triangle Congruence - If △ABC ≅△DEF and △DEF≅ △JKL, △ABC ≅ △JK
Third Angles Theorem - If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent
Side-Angle-Side (SAS) Congruence Theorem - If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent
Base Angle Theorem - If two sides of an isosceles triangle are congruent, then the angles opposite them are congruent
Converse of the Base Angles Theorem - If two angles of a triangle are congruent, then the side opposite them are congruent
Corollary to Base Angles Theorem - If a triangle is equilateral, then it is equiangular
Corollary to the Converse of the Base Angles Theorem - If a triangle is equiangular, then it is equilateral
Side-Side-Side (SSS) Congruence Theorem - If three sides of one triangle congruent to three sides of a second triangle, then the two triangles are congruent
Hypotenuse-Leg (HL) Congruence Theorem - If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent
Angle-Side-Angle (ASA) Congruence Theorem - If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent
Angle-Angle-Side (AAS) Congruence Theorem - If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle. then the two triangles are congruent
CPCTC - Corresponding parts of congruent Triangles are congruent