Trigonometry

Cards (34)

  • Midpoint Formula
    (x1+x22,y1+y22)( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} )
  • Distance Formula
    d(A,B)=d(A,B)= \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
  • Equation of a circle
    (xh)2+(x-h)^2+(yk)2=(y-k)^2=r2r^2
  • standard form of a circle
    x2+x^2+y2=y^2=r2r^2
  • Domain
    all possible x-values
  • Range
    all possible y-values
  • what does [0,25] U [35,40] mean?
    that [] is a specific interval, stops, then continues []
  • Shifts upwards
    f(x)+f(x)+cc
  • shifts downward
    f(x)cf(x)-c
  • Shifts to the right
    f(xc)f(x-c)
  • shifts to the left
    f(x+c)f(x+c)
  • Flips from up to down
    y=y=f(x)-f(x)
  • flips from right to left
    y=y=f(x)f(-x)
  • y=y=cf(x)cf(x)
    if c>1, it will stretch vertically by a factor of c
    if 0<c<1, it will shrink vertically by a factor of c
  • f is even if f(-x) = f(x) for all x in the domain of f
    f is odd if f(-x)= -f(x) for all x in the domain of f
  • Terminal point are determined by
    t=t =π2,π,3π2,2π \frac{\pi}{2} , \pi, \frac{3\pi}{2}, 2\pi
  • cos(x)=cos(x)=x x
  • sin(x)=sin(x) =y y
  • tan(x)=tan(x)=yx \frac{y}{x}
  • csc(x)=csc(x) =1sin(x) \frac{1}{sin(x)}
  • sec(x)=sec(x) =1cos(x) \frac{1}{cos(x)}
  • cot(x)=cot(x) =1tan(x) \frac{1}{tan(x)}
  • tan(x)=tan(x) =sin(x)cos(x) \frac{sin(x)}{cos(x)}
  • cot(x)=cot(x) =cos(x)sin(x) \frac{cos(x)}{sin(x)}
  • sin2x+sin^2x+cos2=cos^2=11
    pythagorean identity
  • tan2x+tan^2x+1=1=sec2x sec^2x
  • cot2x+cot^2x+1=1=csc2xcsc^2x
    pythagorean identity
  • Graph of sin(x)
  • Graph of sin(X)
    • Domain: (-∞, ∞)
    • range [-1,1]
    • period is 2π
    • goes through the origin
    • odd function
  • Graph of cos(x)
  • Graph of cos(x)
    • Domain (-∞,∞)
    • range [-1,1]
    • period is 2π
    • even function
  • a = amplitude ,(vertical stretch or shrink)
    k = period, (changes length of wavelength)
    y=y=asinkxa \:sin \:kx
  • a = amplitude ,(vertical stretch or shrink)
    k = period, (changes length of wavelength)
    y=y=acoskxa\:cos\: kx
  • How to find period of y= a sin kx and y= a cos kx?

    2πk\frac{2\pi}{k}