Save
...
Pure
Algebraic Laws
Log laws
Save
Share
Learn
Content
Leaderboard
Learn
Created by
The Creator
Visit profile
Cards (6)
log
a
n
=
\log_an=
lo
g
a
n
=
x
x
x
implies that
a
x
=
a^x=
a
x
=
n
n
n
ln
x
y
=
\ln xy=
ln
x
y
=
ln
x
+
\ln x\ +
ln
x
+
ln
y
\ \ln y
ln
y
ln
(
x
y
)
=
\ln\left(\frac{x}{y}\right)=
ln
(
y
x
)
=
ln
x
−
ln
y
\ln x\ -\ \ln y
ln
x
−
ln
y
ln
x
k
=
\ln\ x^k=
ln
x
k
=
k
ln
x
k\ln x
k
ln
x
ln
(
1
x
)
=
\ln\left(\frac{1}{x}\right)=
ln
(
x
1
)
=
−
ln
x
-\ln x
−
ln
x
ln
1
=
\ln1=
ln
1
=
0