Save
Bicen Maths
Pure
Graphs & Coordinates
Save
Share
Learn
Content
Leaderboard
Learn
Created by
The Creator
Visit profile
Cards (18)
Midpoint of a graph (
x
1
+
x
2
2
\frac{x_1+x_2}{2}
2
x
1
+
x
2
,
y
1
+
y
2
2
\frac{y_1+y_2}{2}
2
y
1
+
y
2
)
Gradient is given by:
m
=
m=
m
=
△
y
△
x
\frac{\bigtriangleup y}{\bigtriangleup x}
△
x
△
y
If
m
1
m_1
m
1
and
m
2
m_2
m
2
are perpendicular then
m
1
=
m_1=
m
1
=
−
1
m
2
-\frac{1}{m_2}
−
m
2
1
and
m
1
m
2
=
m_1m_2=
m
1
m
2
=
−
1
-1
−
1
Equation of a line:
y
−
y
1
=
y\ -\ y_1=
y
−
y
1
=
m
(
x
−
x
1
)
m\left(x-x_1\right)
m
(
x
−
x
1
)
if
b
2
−
4
a
c
b^2-4ac
b
2
−
4
a
c
>
0 then there are 2 roots
if
b
2
−
4
a
c
b^2-4ac
b
2
−
4
a
c
=
0 then 1 (repeated) root
if
b
2
−
4
a
c
b^2-4ac
b
2
−
4
a
c
<
0 then no real roots
The picture represents the graph
y
=
y=
y
=
−
k
x
\frac{-k}{x}
x
−
k
The picture represents the graph
y
=
y=
y
=
k
x
2
\frac{k}{x^2}
x
2
k
The picture represents the graph
y
=
y=
y
=
−
k
x
2
\frac{-k}{x^2}
x
2
−
k
Equation for a circle with centre (a, b) and radius r:
(
x
−
a
)
2
\left(x-a\right)^2
(
x
−
a
)
2
+
(
y
−
b
)
2
\left(y-b\right)^2
(
y
−
b
)
2
=
r
2
r^2
r
2
Sine
graph
Cosine
graph
Transformation
f
(
x
+
a
)
f\left(x+a\right)
f
(
x
+
a
)
will do a shift of (
0
−
a
_{\ \ 0}^{-a}
0
−
a
)
Transformation
a
f
(
x
)
af\left(x\right)
a
f
(
x
)
will stretch in the
y
direction by scale factor
a
a
a
Transformation
−
f
(
x
)
-f\left(x\right)
−
f
(
x
)
will flip/reflect in the
x
axis
Transformation
f
(
−
x
)
f\left(-x\right)
f
(
−
x
)
will flip/reflect in the
y
axis
Transformation |
f
(
x
)
f\left(x\right)
f
(
x
)
| will flip
up
anything below the
x
axis