Save
Bicen Maths
Pure
Vectors
Save
Share
Learn
Content
Leaderboard
Learn
Created by
The Creator
Visit profile
Cards (5)
Position vectors
A
B
⃗
=
\vec{AB}=
A
B
=
b
‾
−
a
‾
\underline{b}-\underline{a}
b
−
a
If
a
‾
=
\underline{a}=
a
=
x
i
‾
+
\underline{x_i}+
x
i
+
y
j
‾
+
\underline{y_j}+
y
j
+
z
k
‾
z\underline{k}
z
k
then
∣
a
‾
∣
=
\left|\underline{a}\right|=
∣
a
∣
=
x
2
+
y
2
+
z
2
\sqrt{x^2+y^2+z^2}
x
2
+
y
2
+
z
2
Unit vector
a
‾
^
=
\hat{\underline{a}}\ =
a
^
=
1
∣
a
‾
∣
a
‾
\frac{1}{\left|\underline{a}\right|}\underline{a}
∣
a
∣
1
a
Angles with axes:
cos
θ
x
=
\cos\theta_x=
cos
θ
x
=
x
∣
a
‾
∣
\frac{x}{\left|\underline{a}\right|}
∣
a
∣
x
Angles with axes:
cos
θ
z
=
\cos\theta_z=
cos
θ
z
=
z
∣
a
‾
∣
\frac{z}{\left|\underline{a}\right|}
∣
a
∣
z