Integration

Cards (15)

  • Function => Integral
    axnax^n => an+1xn+1+\frac{a}{n+1}x^{n+1}+CC
  • Function => Integral
    exe^x => ex+e^x+CC
  • Function => Integral
    1x\frac{1}{x} => lnx+\ln\left|x\right|+CC
  • Function => Integral
    cosx\cos x => sinx +\sin x\ +CC
  • Function => Integral
    sinx\sin x => cosx+-\cos x+CC
  • Function => Integral
    secxtanx\sec x\tan x => secx+\sec x+CC
  • Function => Integral
    cosec2x\operatorname{cosec}^2x => cotx+-\cot x+CC
  • Function => Integral
    f(ax+b)f'\left(ax+b\right) => 1af(ax+b)+\frac{1}{a}f\left(ax+b\right)+CC
  • Integration by parts
    uvdx=\int_{ }^{ }uv'dx= uvuvdxuv-\int_{ }^{ }u'vdx
  • Parametric integration
    ydxdtdt\int_{ }^{ }y\frac{dx}{dt}dt
    and remember to change the limits
  • To help with integration you can split the numerator
    x1x=\frac{x-1}{x}= xx1x\frac{x}{x}-\frac{1}{x}
  • To help with integration you can use the reverse chain rule
    dudxf(u)dx=\int_{ }^{ }\frac{du}{dx}f'\left(u\right)dx= f(u)+f\left(u\right)+cc
  • To help with integration you can use algebraic division
  • To help with integration you can use partial fractions
  • Trapezium rule
    ydx\int_{ }^{ }ydx\approx 12h(F+L+2M)\frac{1}{2}h\left(F+L+2M\right)
    where F=first, L=last and M=middle