Save
Bicen Maths
Pure
Integration
Save
Share
Learn
Content
Leaderboard
Learn
Created by
The Creator
Visit profile
Cards (15)
Function => Integral
a
x
n
ax^n
a
x
n
=>
a
n
+
1
x
n
+
1
+
\frac{a}{n+1}x^{n+1}+
n
+
1
a
x
n
+
1
+
C
C
C
Function => Integral
e
x
e^x
e
x
=>
e
x
+
e^x+
e
x
+
C
C
C
Function => Integral
1
x
\frac{1}{x}
x
1
=>
ln
∣
x
∣
+
\ln\left|x\right|+
ln
∣
x
∣
+
C
C
C
Function => Integral
cos
x
\cos x
cos
x
=>
sin
x
+
\sin x\ +
sin
x
+
C
C
C
Function => Integral
sin
x
\sin x
sin
x
=>
−
cos
x
+
-\cos x+
−
cos
x
+
C
C
C
Function => Integral
sec
x
tan
x
\sec x\tan x
sec
x
tan
x
=>
sec
x
+
\sec x+
sec
x
+
C
C
C
Function => Integral
cosec
2
x
\operatorname{cosec}^2x
cosec
2
x
=>
−
cot
x
+
-\cot x+
−
cot
x
+
C
C
C
Function => Integral
f
′
(
a
x
+
b
)
f'\left(ax+b\right)
f
′
(
a
x
+
b
)
=>
1
a
f
(
a
x
+
b
)
+
\frac{1}{a}f\left(ax+b\right)+
a
1
f
(
a
x
+
b
)
+
C
C
C
Integration by parts
∫
u
v
′
d
x
=
\int_{ }^{ }uv'dx=
∫
u
v
′
d
x
=
u
v
−
∫
u
′
v
d
x
uv-\int_{ }^{ }u'vdx
uv
−
∫
u
′
v
d
x
Parametric
integration
∫
y
d
x
d
t
d
t
\int_{ }^{ }y\frac{dx}{dt}dt
∫
y
d
t
d
x
d
t
and remember to change the
limits
To help with integration you can split the
numerator
x
−
1
x
=
\frac{x-1}{x}=
x
x
−
1
=
x
x
−
1
x
\frac{x}{x}-\frac{1}{x}
x
x
−
x
1
To help with integration you can use the
reverse
chain rule
∫
d
u
d
x
f
′
(
u
)
d
x
=
\int_{ }^{ }\frac{du}{dx}f'\left(u\right)dx=
∫
d
x
d
u
f
′
(
u
)
d
x
=
f
(
u
)
+
f\left(u\right)+
f
(
u
)
+
c
c
c
To help with integration you can use
algebraic
division
To help with integration you can use
partial
fractions
Trapezium rule
∫
y
d
x
≈
\int_{ }^{ }ydx\approx
∫
y
d
x
≈
1
2
h
(
F
+
L
+
2
M
)
\frac{1}{2}h\left(F+L+2M\right)
2
1
h
(
F
+
L
+
2
M
)
where F=first, L=last and M=middle