Cards (5)

  • Two event \alpha and \beta said to be independant in a joint distribution P, denoted as (A \bot B) (is symmetrix), if
    P(αβ)=P(\alpha | \beta) =P(α) P(\alpha) or P(βα)=P(\beta | \alpha) =P(β) P(\beta) or P(αβ)=P(\alpha \cap \beta) =P(α)P(β) P(\alpha) P(\beta)
  • Two random variables X,Y are independant if for all values
  • Number of entries in joint distributino grows exponentially with number of variables.
  • Two events \alpha, \beta , \gamma :
    P(αβγ)=P(\alpha | \beta \cap \gamma) =P(αγ),P(βαγ)= P(\alpha | \gamma), P(\beta | \alpha \cap \gamma) =P(βγ),P(αβγ)= P(\beta| \gamma), P(\alpha \cap \beta | \gamma) =P(αγ)P(βγ) P(\alpha | \gamma)P(\beta|\gamma)
  • P(X,Y,Z)=P(X,Y,Z) =P(XY,Z)P(Y,Z)= P(X|Y,Z) P(Y,Z) =P(XY,Z)P(YZ)P(Z)= P(X|Y,Z) P(Y|Z) P(Z) =P(XZ)P(YZ)P(Z) P(X|Z) P(Y|Z) P(Z)