Math - part 2,3

Cards (8)

  • (G⊥̸LI,D)(G \not \bot L | I,D)
    G is not independant of L
  • G is conditionally independ of S, given I and D
  • D is independant of I and S
    (DI,S)(D \bot I, S)
  • P(D,I,G,S,L)=P(D,I,G,S,L) = P(D)P(I)P(GD,I)P(SI)P(LG)P(D) P(I) P(G|D,I) P(S|I) P(L|G)
  • P(Dg3,s1)=P(D|g^3, s^1) =1Z[P(d0,g3,s1)P(d1,g3,s1)] \frac{1}{Z} [ P(d^0, g^3, s^1) P(d^1, g^3, s^1)]
    A) i0,i1
    B) l0l1
  • Estimating the probability
    A) 27
    B) 1000
  • Rejection sampling
    A) G,S,L
    B) i1
    C) 31
    D) 84
  • Sample-Likelihood weighting
    A) 1.0
    B) d0,d1
    C) i0,i1
    D) evidence
    E) 0.7
    F) s1|i0