9.1 Defining and Differentiating Parametric Equations

Cards (37)

  • What is the variable typically used as the parameter in parametric equations?
    t
  • The parameter tt allows you to trace a curve by varying its value.

    True
  • In parametric equations, the function f(t)f(t) maps values of tt to the x-coordinates, while g(t)g(t) maps values of tt to the y-coordinates
  • Steps to graph parametric equations
    1️⃣ Choose a range of values for tt
    2️⃣ Plug each value of tt into the equations to find the corresponding xx and yy coordinates
    3️⃣ Plot the points (x,y)(x, y) to trace out the curve
  • What do you vary in parametric equations to trace the curve?
    Parameter t
  • When graphing parametric equations, the parameter t is varied to trace the curve
  • What is the key difference between graphing parametric and standard equations?
    Use of parameter t
  • What are parametric equations used to define?
    Curve or path
  • In parametric equations, f(t)f(t) defines the y-coordinates of the curve.

    False
  • To graph parametric equations, plug each value of t into the equations to find the corresponding coordinates
  • What formula is used to find dydx\frac{dy}{dx} in parametric form when x=x =f(t) f(t) and y=y =g(t) g(t)?

    dydx=\frac{dy}{dx} =dydtdxdt \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
  • The second step to find \frac{dy}{dx}</latex> in parametric form is to find dxdt\frac{dx}{dt} by differentiating x=x =f(t) f(t) with respect to t
  • Match the type of equation with its derivative formula:
    Parametric Equations ↔️ dydx=\frac{dy}{dx} =dydtdxdt \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    Standard Functions ↔️ dydx=\frac{dy}{dx} =F(x) F'(x)
  • Given x = t^{2}</latex> and y=y =2t3 2t^{3}, what is dxdt\frac{dx}{dt}?

    2t2t
  • The second derivative d2ydx2\frac{d^{2}y}{dx^{2}} in parametric form is found by differentiating \frac{dy}{dx}</latex> with respect to xx directly.

    False
  • In parametric equations, x=x =f(t) f(t) and y = g(t)</latex> define the x and y coordinates in terms of the parameter t
  • What do parametric equations define in terms of the parameter t</latex>?
    x and y coordinates
  • What is the first step to graph parametric equations?
    Choose a range for t
  • Graphing parametric equations uses a parameter tt to define the curve, unlike standard equations.

    True
  • What is the parameter used in parametric equations to define a curve?
    t
  • To graph parametric equations, you directly relate the x and y coordinates.
    False
  • Steps to graph a curve defined by parametric equations
    1️⃣ Choose a range of values for the parameter t.
    2️⃣ Plug each value of t into the equations to find the corresponding x and y coordinates.
    3️⃣ Plot the points (x, y) to trace out the curve as t is varied.
  • The parameter t in parametric equations allows you to trace the curve by varying its value
  • What does g(t)g(t) define in parametric equations?

    y-coordinates
  • What formula is used to find dydx\frac{dy}{dx} in parametric form?

    dydx=\frac{dy}{dx} =dydtdxdt \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
  • To find dydx\frac{dy}{dx} in parametric form, the first step is to find dydt\frac{dy}{dt} by differentiating y=y =g(t) g(t) with respect to t
  • What is the main difference between finding dydx\frac{dy}{dx} in parametric equations and standard functions?

    Use of parameter tt
  • Given x=x =t2 t^{2} and y=y =2t3 2t^{3}, what is dydt\frac{dy}{dt}?

    6t26t^{2}
  • Given x=x =t2 t^{2} and y=y =2t3 2t^{3}, what is dydx\frac{dy}{dx}?

    3t3t
  • What is the formula for d2ydx2\frac{d^{2}y}{dx^{2}} in parametric form?

    d2ydx2=\frac{d^{2}y}{dx^{2}} =ddt(dydx)dxdt \frac{\frac{d}{dt} \left( \frac{dy}{dx} \right)}{\frac{dx}{dt}}
  • When finding the second derivative in parametric form, the second step is to differentiate dydx\frac{dy}{dx} with respect to t
  • Match the type of equation with its second derivative formula:
    Parametric Equations ↔️ d2ydx2=\frac{d^{2}y}{dx^{2}} =ddt(dydx)dxdt \frac{\frac{d}{dt} \left( \frac{dy}{dx} \right)}{\frac{dx}{dt}}
    Standard Functions ↔️ d2ydx2=\frac{d^{2}y}{dx^{2}} =F(x) F''(x)
  • Given x=x =t2 t^{2} and y=y =2t3 2t^{3}, what is dydx\frac{dy}{dx}?

    3t3t
  • Given \frac{d}{dt} \left( \frac{dy}{dx} \right) = 3</latex>, what is d2ydx2\frac{d^{2}y}{dx^{2}}?

    32t\frac{3}{2t}
  • Steps to find d2ydx2\frac{d^{2}y}{dx^{2}} in parametric form:

    1️⃣ Calculate dydx=\frac{dy}{dx} =dydtdxdt \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    2️⃣ Differentiate dydx\frac{dy}{dx} with respect to tt
    3️⃣ Divide the result by dxdt\frac{dx}{dt}
  • What is the formula for dydx\frac{dy}{dx} in parametric form?

    dydx=\frac{dy}{dx} =dydtdxdt \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
  • Given dydx=\frac{dy}{dx} =3t 3t, what is ddt(dydx)\frac{d}{dt} \left( \frac{dy}{dx} \right)?

    3