8.15 Arc Length of a Curve

Cards (47)

  • What does the term "arc length" refer to?
    Length of a curve
  • For a curve in non-parametric form, we use the derivative dy/dx
  • For parametric curves, we use the derivatives dx/dt and dy/dt to calculate arc length.

    True
  • What theorem is used in deriving the arc length formula?
    Pythagorean theorem
  • The arc length formula is derived using the fundamental theorem of calculus.

    True
  • What is the formula for ds^2 using the Pythagorean theorem?
    ds2=ds^{2} =dx2+ dx^{2} +dy2 dy^{2}
  • Steps to apply the arc length formula for y = f(x):
    1️⃣ Compute dy/dx
    2️⃣ Square the derivative
    3️⃣ Add 1 to the square of the derivative
    4️⃣ Take the square root
    5️⃣ Integrate from a to b
  • The parametric form arc length formula uses the derivatives dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}
    True
  • Match the curve form with its formula and derivatives:
    Non-Parametric ↔️ ab1+(dydx)2dx\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx ||| dydx\frac{dy}{dx}
    Parametric ↔️ \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt ||| dxdt\frac{dx}{dt}, dydt\frac{dy}{dt}
  • What is the first step in applying the arc length formula for a non-parametric curve `y = f(x)`?
    Compute the derivative
  • For parametric curves, we use the derivatives `dx/dt` and `dy/dt` instead of `dy/dx` in the arc length formula.

    True
  • Match the form of the curve with its arc length formula:
    Non-Parametric ↔️ ab1+(dydx)2dx\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx
    Parametric ↔️ \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt
  • What are the two forms of curves for which arc length can be calculated using definite integrals?
    Non-parametric and parametric
  • For a non-parametric curve, the arc length formula uses the derivative dydx\frac{dy}{dx}.

    True
  • If x=x =t2 t^{2} and y=y =t3 t^{3}, then \frac{dx}{dt}</latex> is 2t
  • The parametric arc length formula involves integrating the square root of the sum of the squares of dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} with respect to t
  • The arc length of x=x =t2 t^{2}, y=y =t3 t^{3} from t=t =0 0 to t=t =1 1 is approximately 1.4397

    True
  • Steps for using basic substitution to calculate arc length
    1️⃣ Identify a composite function in the integrand
    2️⃣ Substitute a part of the integrand with a new variable
    3️⃣ Find the derivative of the new variable
    4️⃣ Rewrite the integral in terms of the new variable
    5️⃣ Evaluate the simplified integral
  • The formula for integration by parts is udv=\int u \, dv =uvvdu uv - \int v \, du, where vv is the integral of dv
  • When using basic substitution, the differential dx must be rewritten in terms of du.

    True
  • Match the expression with the correct trigonometric substitution:
    a2x2\sqrt{a^{2} - x^{2}} ↔️ x=x =asinθ a\sin\theta
    \sqrt{a^{2} + x^{2}} ↔️ x=x =atanθ a\tan\theta
    x2a2\sqrt{x^{2} - a^{2}} ↔️ x=x =asecθ a\sec\theta
  • The derivative of u=u =9x4 9x^{4} with respect to xx is dudx=\frac{du}{dx} =36x3 36x^{3}.

    True
  • The arc length of y=y =x3 x^{3} from x=x =0 0 to x=x =2 2 can be calculated using the substitution u=u =9x4 9x^{4}.

    True
  • What is the length of the parabolic cable described by y=y =0.01x2 0.01x^{2} from x=x =50 - 50 to x=x =50 50?

    100.333\approx 100.333 meters
  • Arc length is calculated using definite integrals.
    True
  • Match the formula with the type of curve:
    Arc Length = ab1+(dydx)2dx\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx ↔️ Non-parametric form
    Arc Length = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt ↔️ Parametric form
  • To derive the arc length formula, we use concepts from differential geometry
  • Steps in deriving the arc length formula for a non-parametric curve:
    1️⃣ Consider an infinitesimal arc length ds
    2️⃣ Use the Pythagorean theorem
    3️⃣ Substitute dy = f'(x) dx
    4️⃣ Simplify the expression
    5️⃣ Take the square root and integrate
  • For parametric curves, we use the derivatives dx/dt and dy/dt
  • The expression ds^2 = dx^2 + (f'(x) dx)^2 simplifies to ds^2 = (1 + (f'(x))^2) dx^2.

    True
  • Steps to apply the arc length formula for a curve y=y =f(x) f(x) between points aa and bb
    1️⃣ Compute the derivative dydx\frac{dy}{dx}
    2️⃣ Square the derivative (dydx)2\left(\frac{dy}{dx}\right)^{2}
    3️⃣ Add 1 to the square of the derivative 1+1 +(dydx)2 \left(\frac{dy}{dx}\right)^{2}
    4️⃣ Take the square root 1+(dydx)2\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}
    5️⃣ Integrate with respect to xx from aa to bb
  • For the non-parametric example y=y =x2 x^{2}, the derivative dydx\frac{dy}{dx} is 2x2x
    True
  • The arc length formula for a non-parametric curve is derived using the Pythagorean theorem and infinitesimal arc length concepts.

    True
  • The arc length formula for a non-parametric curve is \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx
  • Steps to apply the arc length formula for a non-parametric curve `y = f(x)`:
    1️⃣ Compute the derivative dydx\frac{dy}{dx}
    2️⃣ Square the derivative (dydx)2\left(\frac{dy}{dx}\right)^{2}
    3️⃣ Add 1 to the square of the derivative: 1+1 +(dydx)2 \left(\frac{dy}{dx}\right)^{2}
    4️⃣ Take the square root of the sum: 1+(dydx)2\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}
    5️⃣ Integrate the result with respect to `x` from `a` to `b`:
  • What are the derivatives used in the arc length formula for parametric curves?
    dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}
  • The arc length formula for a parametric curve involves integrating with respect to the variable `t`.

    True
  • The arc length formula for a parametric curve is \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt
  • What is the derivative of y=y =x2 x^{2}?

    2x2x
  • What is the value of dydt\frac{dy}{dt} if y=y =t3 t^{3}?

    3t23t^{2}