Cards (42)

  • What is a collision defined as in physics?
    Interaction with brief forces
  • What is always conserved in both elastic and inelastic collisions?
    Momentum
  • The mathematical expression for conservation of momentum is p1+p_{1} +p2= p_{2} =p1+ p'_{1} +p2 p'_{2}, where p1p_{1} and p2p_{2} are the initial momenta, and p1p'_{1} and p2p'_{2} are the final momenta
  • What is the primary difference between elastic and inelastic collisions in terms of energy conservation?
    Kinetic energy conserved in elastic
  • The principle of conservation of momentum states that pinitial=p_{initial} =pfinal p_{final}, where pinitialp_{initial} is the total momentum before the collision and pfinalp_{final} is the total momentum after
  • What is the expanded form of the momentum conservation equation?
    m_{1}v_{1} + m_{2}v_{2} = m_{1}v'_{1} + m_{2}v'_{2}</latex>
  • How is the momentum of an object calculated?
    p=p =mv mv
  • Match the collision type with its properties:
    Elastic ↔️ Kinetic energy conserved
    Inelastic ↔️ Kinetic energy lost
  • What typically happens to kinetic energy in inelastic collisions?
    It converts to heat or sound
  • What are the two types of collisions based on kinetic energy conservation?
    Elastic and inelastic
  • Inelastic collisions conserve momentum but not kinetic energy
  • In any collision, the total momentum of the colliding objects remains constant.
  • The momentum of an object is calculated as its mass multiplied by its velocity
  • In inelastic collisions, kinetic energy is transformed into heat or sound
  • In an elastic collision, the total kinetic energy of the system is conserved.

    True
  • Match the collision type with its characteristic:
    Elastic ↔️ Conserves kinetic energy
    Inelastic ↔️ Loses kinetic energy
  • In any collision, the total momentum before equals the total momentum after.

    True
  • Steps to solve a collision problem using conservation of momentum
    1️⃣ Identify the initial and final momenta
    2️⃣ Apply the conservation of momentum equation
    3️⃣ Solve for the unknown quantity
  • Inelastic collisions always involve the conversion of kinetic energy into heat or sound.

    True
  • What does the principle of momentum conservation state in collisions?
    Total momentum is conserved
  • In elastic collisions, kinetic energy is conserved.

    True
  • The formula to calculate total momentum after a collision is m1v1+m_{1}v'_{1} +m2v2 m_{2}v'_{2}
  • A collision involves two or more objects exerting forces on each other for a brief period.

    True
  • A collision is an event where two or more objects interact and exert forces on each other for a brief period
  • Match the type of collision with its conservation properties:
    Elastic ↔️ Momentum and kinetic energy conserved
    Inelastic ↔️ Momentum conserved, kinetic energy lost
  • The conservation of momentum applies to both elastic and inelastic collisions.
    True
  • What is the formula for calculating momentum?
    p=p =mv mv
  • What is the definition of impulse?
    Change in momentum
  • What happens to kinetic energy in an inelastic collision?
    Converted to other forms
  • In elastic collisions, objects bounce off each other with no loss of energy
  • Match the collision type with its conservation properties:
    Elastic ↔️ Conserves momentum and kinetic energy
    Inelastic ↔️ Conserves momentum only
  • What is an example of an inelastic collision?
    Car crash
  • The mathematical expression for momentum conservation is p_{initial} = p_{final}
  • An example of an elastic collision is billiard balls colliding
  • Kinetic energy is conserved in both elastic and inelastic collisions.
    False
  • In elastic collisions, kinetic energy is conserved
  • An example of an inelastic collision is dropping a ball
  • Elastic collisions conserve both momentum and kinetic energy.

    True
  • Order the steps involved in analyzing collisions using the conservation of momentum:
    1️⃣ Identify the colliding objects
    2️⃣ Calculate initial total momentum
    3️⃣ Calculate final total momentum
    4️⃣ Equate initial and final momentum
    5️⃣ Solve for unknown variables
  • What is the mathematical expression for the conservation of momentum?
    p_{1} + p_{2} = p'_{1} + p'_{2}</latex>