Save
Methods
Calculus
Differentiation
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Arjun Nair
Visit profile
Cards (17)
(
f
(
x
)
∗
(f(x)*
(
f
(
x
)
∗
g
(
x
)
)
′
g(x))'
g
(
x
)
)
′
f
(
x
)
g
′
(
x
)
+
f(x)g'(x) +
f
(
x
)
g
′
(
x
)
+
f
′
(
x
)
g
(
x
)
f'(x)g(x)
f
′
(
x
)
g
(
x
)
[
f
(
x
)
g
(
x
)
]
′
[\frac{f(x)}{g(x)}]\space'
[
g
(
x
)
f
(
x
)
]
′
\frac{f'(x)*
g
(
x
)
−
f
(
x
)
∗
g(x) - f(x)*
g
(
x
)
−
f
(
x
)
∗
g'(x)}{(g(x))^2}
[
f
(
g
(
x
)
)
]
′
[f(g(x))]\space'
[
f
(
g
(
x
))]
′
f
′
(
g
(
x
)
)
∗
f'(g(x))*
f
′
(
g
(
x
))
∗
g
′
(
x
)
g'(x)
g
′
(
x
)
[
c
o
s
(
x
)
]
′
[cos(x)]\space'
[
cos
(
x
)]
′
−
s
i
n
(
x
)
-sin(x)
−
s
in
(
x
)
[
s
i
n
(
x
)
]
′
[sin(x)]\space'
[
s
in
(
x
)]
′
c
o
s
(
x
)
cos(x)
cos
(
x
)
[
t
a
n
(
x
)
]
′
[tan(x)]\space'
[
t
an
(
x
)]
′
s
e
c
2
(
x
)
/
1
c
o
s
2
(
x
)
sec^{2}(x)\space/\space\frac{1}{cos^2(x)}
se
c
2
(
x
)
/
co
s
2
(
x
)
1
[
e
x
]
′
[e^x]\space'
[
e
x
]
′
e
x
e^x
e
x
[
(
e
2
x
)
]
′
[\space (e^{2x})\space]'
[
(
e
2
x
)
]
′
2
∗
2*
2
∗
e
2
x
e^{2x}
e
2
x
[
a
x
]
′
[a^x]\space'
[
a
x
]
′
a
x
∗
a^x*
a
x
∗
l
n
(
a
)
ln(a)
l
n
(
a
)
[
l
n
(
x
)
]
′
[ln(x)]\space'
[
l
n
(
x
)]
′
1
x
\frac{1}{x}
x
1
[
l
n
(
f
(
x
)
)
]
′
[\space ln(f(x))\space ]\space'
[
l
n
(
f
(
x
))
]
′
f
′
(
x
)
∗
f\space'(x) *
f
′
(
x
)
∗
1
f
(
x
)
\frac{1}{f(x)}
f
(
x
)
1
[
f
(
x
)
n
]
′
[\space f(x)^n\space]\space'
[
f
(
x
)
n
]
′
n
∗
n*
n
∗
f
′
(
x
)
∗
f\space'(x)*
f
′
(
x
)
∗
f
(
x
)
n
−
1
f(x)^{n-1}
f
(
x
)
n
−
1
[
e
3
x
2
]
′
[\space e^{3x^2}\space]\space'
[
e
3
x
2
]
′
6
x
∗
6x *
6
x
∗
e
3
x
2
e^{3x^2}
e
3
x
2
[
s
i
n
(
h
(
x
)
)
]
′
[\space sin(h(x))\space]\space'
[
s
in
(
h
(
x
))
]
′
h
′
(
x
)
∗
h'(x)*
h
′
(
x
)
∗
c
o
s
(
h
(
x
)
)
cos(h(x))
cos
(
h
(
x
))
[
c
o
s
(
h
(
x
)
)
]
′
[\space cos(h(x))\space]\space'
[
cos
(
h
(
x
))
]
′
−
h
′
(
x
)
∗
-h'(x)*
−
h
′
(
x
)
∗
s
i
n
(
h
(
x
)
)
sin(h(x))
s
in
(
h
(
x
))
[
t
a
n
(
h
(
x
)
)
]
′
[\space tan(h(x))\space]\space'
[
t
an
(
h
(
x
))
]
′
h
′
(
x
)
∗
h'(x)*
h
′
(
x
)
∗
s
e
c
2
(
h
(
x
)
)
/
h
′
(
x
)
c
o
s
2
(
x
)
sec^2(h(x)) \space / \space \frac{h'(x)}{cos^2(x)}
se
c
2
(
h
(
x
))
/
co
s
2
(
x
)
h
′
(
x
)
[
l
o
g
e
(
h
(
x
)
)
]
′
[\space log_e(h(x))\space]'
[
l
o
g
e
(
h
(
x
))
]
′
h
′
(
x
)
h
(
x
)
\frac{h'(x)}{h(x)}
h
(
x
)
h
′
(
x
)
See similar decks
Unit 4: Contextual Applications of Differentiation
AP Calculus AB
233 cards
Unit 4: Contextual Applications of Differentiation
AP Calculus BC
466 cards
4. Calculus
OCR A-Level Further Mathematics > Pure Core
195 cards
3.2 Implicit Differentiation
AP Calculus BC > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
20 cards
cell differentiation
biology
47 cards
1.7 Differentiation
OCR A-Level Mathematics > 1. Pure Mathematics
46 cards
1.7 Differentiation
OCR A-Level Further Mathematics > Mathematics A > 1. Pure Mathematics
35 cards
3.4 Differentiating Inverse Trigonometric Functions
AP Calculus AB > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
74 cards
Unit 5: Analytical Applications of Differentiation
AP Calculus AB
548 cards
Unit 2: Differentiation: Definition and Fundamental Properties
AP Calculus AB
542 cards
3.3 Differentiating Inverse Functions
AP Calculus AB > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
48 cards
1.7 Differentiation
Edexcel A-Level Mathematics > 1. Pure Mathematics
91 cards
4.1 Differentiation
OCR A-Level Further Mathematics > Pure Core > 4. Calculus
101 cards
Unit 5: Analytical Applications of Differentiation
AP Calculus BC
841 cards
4.7 Using L'Hôpital's Rule
AP Calculus AB > Unit 4: Contextual Applications of Differentiation
93 cards
AP Calculus BC
6237 cards
2.4 Further Calculus
AQA A-Level Further Mathematics > 2. Compulsory Content
70 cards
Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
AP Calculus BC
286 cards
4.5 Solving Related Rates Problems
AP Calculus AB > Unit 4: Contextual Applications of Differentiation
31 cards
4.5 Solving Related Rates Problems
AP Calculus BC > Unit 4: Contextual Applications of Differentiation
112 cards
4.4 Introduction to Related Rates
AP Calculus BC > Unit 4: Contextual Applications of Differentiation
26 cards