4.1 Describing how quantities change with respect to each other in a parametric function

Cards (31)

  • A parametric function defines a curve or surface using a parameter, typically denoted as t
  • In a parametric function, the x-coordinate is expressed as x(t).
  • What curve is created by the parametric function x(t) = 2t and y(t) = t^2?
    Parabola
  • The parameter in a parametric function dictates the position on the curve
  • Parametric functions offer greater flexibility than standard functions like y = f(x).
  • Steps to identify key components of a parametric function
    1️⃣ Identify the parameter (t)
    2️⃣ Define x(t) function
    3️⃣ Define y(t) function
  • Match the parametric component with its description:
    Parameter (t) ↔️ Dictates the position on the curve
    x(t) ↔️ Defines the x-coordinate
    y(t) ↔️ Defines the y-coordinate
  • Varying the parameter t traces the path of the curve in a parametric function.
  • A parametric function uses a parameter typically denoted as t
  • In parametric functions, the parameter t is often linear or quadratic.
  • Changes in the parameter t in a parametric function affect the coordinates x(t) and y(t).
  • Match the effect on coordinates with the corresponding change in parameter t:
    x(t) increases linearly ↔️ Moves rightward
    y(t) increases quadratically ↔️ Moves upward
  • The rate of change in x(t) for the parametric function x(t) = 2t is constant.
  • The parameter in a parametric function is the variable that dictates the position on the curve
  • In a parametric function, the parameter t dictates the position along the curve or surface.
  • What is a parametric function used to define?
    Curve or surface
  • A parametric function expresses coordinates (x, y) as functions of a variable called a parameter
  • Parametric functions offer greater flexibility in describing complex curves compared to standard functions.
  • What does the parameter 't' dictate in a parametric function?
    Position on the curve
  • In a parametric function, the x-coordinate is defined by the function x(t)
  • The parameter 't' determines the position along the curve or surface in a parametric function.
  • What is the role of y(t) in a parametric function?
    Defines the y-coordinate
  • By varying the parameter 't', you can trace the path of the curve
  • Match the parametric function components with their effects:
    t ↔️ Parameter
    x(t) ↔️ x-coordinate
    y(t) ↔️ y-coordinate
  • What happens to the x-coordinate when 't' increases in the parametric function x(t) = 2t?
    Increases linearly
  • In the parametric function x(t) = 2t and y(t) = t^2, the direction of movement as 't' increases is rightward for x and upward for y
  • In the parametric function x(t) = 2t, the x-coordinate increases at a constant rate as 't' increases.
  • What type of curve is traced by the parametric function x(t) = 2t and y(t) = t^2?
    Parabola
  • Steps to visualize a parametric function on a graph:
    1️⃣ Plot the x(t) and y(t) functions separately
    2️⃣ Trace the path of the curve
    3️⃣ Observe the relationship between x and y
  • Plotting x(t) = 2t results in a straight line with a constant slope
  • When x(t) = 2t and y(t) = t^2 are traced, they create a parabolic curve in the xy-plane.