Save
AP Precalculus
Unit 4: Functions Involving Parameters, Vectors, and Matrices
4.1 Describing how quantities change with respect to each other in a parametric function
Save
Share
Learn
Content
Leaderboard
Share
Learn
Cards (31)
A parametric function defines a curve or surface using a parameter, typically denoted as
t
In a parametric function, the x-coordinate is expressed as
x(t)
.
What curve is created by the parametric function x(t) = 2t and y(t) = t^2?
Parabola
The parameter in a parametric function dictates the position on the
curve
Parametric functions offer greater flexibility than standard functions like
y = f(x)
.
Steps to identify key components of a parametric function
1️⃣ Identify the parameter (t)
2️⃣ Define x(t) function
3️⃣ Define y(t) function
Match the parametric component with its description:
Parameter (t) ↔️ Dictates the position on the curve
x(t) ↔️ Defines the x-coordinate
y(t) ↔️ Defines the y-coordinate
Varying the parameter t traces the path of the curve in a
parametric
function.
A parametric function uses a parameter typically denoted as
t
In parametric functions, the parameter
t
is often linear or quadratic.
Changes in the parameter t in a parametric function affect the
coordinates
x(t) and y(t).
Match the effect on coordinates with the corresponding change in parameter t:
x(t) increases linearly ↔️ Moves rightward
y(t) increases quadratically ↔️ Moves upward
The rate of change in x(t) for the parametric function x(t) = 2t is
constant
.
The parameter in a parametric function is the variable that dictates the position on the
curve
In a parametric function, the
parameter
t dictates the position along the curve or surface.
What is a parametric function used to define?
Curve or surface
A parametric function expresses coordinates (x, y) as functions of a variable called a
parameter
Parametric functions offer greater flexibility in describing
complex curves
compared to standard functions.
What does the parameter 't' dictate in a parametric function?
Position on the curve
In a parametric function, the x-coordinate is defined by the function
x(t)
The parameter 't' determines the position along the curve or surface in a
parametric
function.
What is the role of y(t) in a parametric function?
Defines the y-coordinate
By varying the parameter 't', you can trace the path of the
curve
Match the parametric function components with their effects:
t ↔️ Parameter
x(t) ↔️ x-coordinate
y(t) ↔️ y-coordinate
What happens to the x-coordinate when 't' increases in the parametric function x(t) = 2t?
Increases linearly
In the parametric function x(t) = 2t and y(t) = t^2, the direction of movement as 't' increases is rightward for x and upward for
y
In the parametric function x(t) = 2t, the x-coordinate increases at a constant
rate
as 't' increases.
What type of curve is traced by the parametric function x(t) = 2t and y(t) = t^2?
Parabola
Steps to visualize a parametric function on a graph:
1️⃣ Plot the x(t) and y(t) functions separately
2️⃣ Trace the path of the curve
3️⃣ Observe the relationship between x and y
Plotting x(t) = 2t results in a straight line with a constant
slope
When x(t) = 2t and y(t) =
t^2
are traced, they create a parabolic curve in the xy-plane.