Save
trig identities
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Abdella Khamis
Visit profile
Cards (76)
tan u/2
(1-cos
u
)/
sin u
; =
sin u
/ (
1+cos
u)
cos u/2
+-
sqrt
(
1+cos
u
)
/2
sin u/2
+-
sqrt
(
1-cos u
)/
2
tan ^2 x
(
1-cos2x
)
/
(
1+cos2x
)
sin^2 x
(
1-cos 2x
)/
2
tan 2x
2tanx
/(
1-tan
^
2 x
)
cos2x
cos^2
x-
sin^2
x
; =
1-2sin^2x
; =
2
cos^2
x-1
sin 2x
2sin
x
cosx
cos x- cos y
-2sin
(
x+y
)/
2 sin
(
x-y
)/
2
cosx+ cos y
2 cos
(
x+y
)/
2
cos
(
x-y
)/
2
sinx- siny
2
cos
(
x+y
)/
2cos
(
x-y
)/
2
sin x+ sin y
2sin
(
x+y
)/
2 cos
(
x-y
)/
2
sin u sin v
1/2
[
cos
(
u+v
)
-
cos
(
u+v
)]
cos u cos v
1
/
2
[
cos
(
u
+
v
)
+
cos
(
u-v
)]
cos u sin v
1/2
[
sin
(
u+v
)
-
sin
(
u-v
)]
sin u cos v
1/2
[
sin (u+v) + sin (u-v)
]
tan (s-t)
(
tan s
-
tan t
)/(
1+ tan s tan t
)
tan (s+t)
(
tan s
+
tan t
)/ (
1-tan s tan t
)
cos (s-t)
cos s cos t+ sin s sin t
cos (s+t)
cos s cos t- sin s sin t
sin (s-t)
sin s cos t- cos s sin t
sin (s+t)
sin s cos t+ cos s sin t
csc (pi/2 - u)
sec u
cot (pi/2-u)
tan u
tan (pi/2-u)
cot u
cos (pi/2-u)=
sin u
sin (pi/2 - u)=
cos
u
tan (-x)
-tanx
cos (-x)
cosx
1+cot^2 x
=

csc^2 x
tan^2 x+1
=

sec^2 x
sin(-x)
-sinx
sin^2x+cos^2x=
1
cotx=
cosx/sinx
tan x=
sinx
/
cosx
cot x=
1/tanx
sec x=
1/cos
csc x=
1/sin
tan u/2
(
1-cos
u)
/
sin u
; =
sin u
/ (
1+cos u
)
cos u/2
+-
sqrt
(
1+cos u
)/2
See all 76 cards