trig identities

Cards (76)

  • tan u/2
    (1-cos u)/sin u; = sin u/ (1+cos u)
  • cos u/2
    +- sqrt (1+cos u)/2
  • sin u/2
    +- sqrt (1-cos u)/2
  • tan ^2 x
    (1-cos2x)/(1+cos2x)
  • sin^2 x
    (1-cos 2x)/2
  • tan 2x
    2tanx/(1-tan^2 x)
  • cos2x
    cos^2 x- sin^2 x; = 1-2sin^2x; = 2 cos^2 x-1
  • sin 2x
    2sin x cosx
  • cos x- cos y
    -2sin (x+y)/2 sin (x-y)/2
  • cosx+ cos y
    2 cos (x+y)/2 cos (x-y)/2
  • sinx- siny
    2 cos (x+y)/2cos (x-y)/2
  • sin x+ sin y
    2sin (x+y)/2 cos (x-y)/2
  • sin u sin v
    1/2 [cos (u+v)- cos (u+v)]
  • cos u cos v
    1/2[cos (u+v)+ cos (u-v)]
  • cos u sin v
    1/2 [sin (u+v)- sin (u-v)]
  • sin u cos v
    1/2 [sin (u+v) + sin (u-v)]
  • tan (s-t)
    (tan s - tan t)/(1+ tan s tan t)
  • tan (s+t)
    (tan s + tan t )/ (1-tan s tan t)
  • cos (s-t)
    cos s cos t+ sin s sin t
  • cos (s+t)
    cos s cos t- sin s sin t
  • sin (s-t)
    sin s cos t- cos s sin t
  • sin (s+t)
    sin s cos t+ cos s sin t
  • csc (pi/2 - u)
    sec u
  • cot (pi/2-u)
    tan u
  • tan (pi/2-u)
    cot u
  • cos (pi/2-u)=
    sin u
  • sin (pi/2 - u)=
    cos u
  • tan (-x)
    -tanx
  • cos (-x)
    cosx
  • 1+cot^2 x=

    csc^2 x
  • tan^2 x+1=

    sec^2 x
  • sin(-x)
    -sinx
  • sin^2x+cos^2x=
    1
  • cotx=
    cosx/sinx
  • tan x=
    sinx/cosx
  • cot x=
    1/tanx
  • sec x=
    1/cos
  • csc x=
    1/sin
  • tan u/2
    (1-cos u)/sin u; = sin u/ (1+cos u)
  • cos u/2
    +- sqrt (1+cos u)/2