Save
methods
calculus
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Tan N
Visit profile
Cards (8)
Chain
rule:
y = [f(x)]
dy
/dx = n[f(x)]
^n-1 x f'(x)
Product
rule:
f(x)
x g(x
) = f'(
x)g(x)
+ f(x)g'(x)
Quotient
rule:
f(x)/g(x) = f'(x)g(
x) -
f(x)
g'(x) / [g(x)]
^2
Derivation of
exponentials
:
e^x = e^x
e^
f(x) = e^f
(x) x f'(x)
Logarithmic
functions:
ln x = 1/x
ln
f(x) =
f'(x)/f(x)
Exponent
laws:
e^
m
x e^n = e^
m+n
(
e^m
)^n = e^
mn
e^m/e
^n = e^
m-n
e^-m =
1/e^m
e^0 =
1
Logarithm laws:
ln
(
ab
) =
lna
+
lnb
ln(
a/b
) = lna - lnb
n
lna
=
lna
^n
lna
^
-1
=
ln(1/a)
lne=1
lne^n=n
e^
lnb
= b
ln1=0
Trigonometric
function:
sin(x)
=
cos(x)
cos(x) =
-sin(x
)
tan(x)
=
1/cos^2(
x)
sin
(f(x))
=
cos(f(x)) x f'(x)
cos(f(x))
=
-sin
(f(x)) x f'(x)
tan(f(x)
)
= 1/
cos^2
(f(x)) x f'(x)