Save
ENG207A - Prelim
Formulas
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Christine
Visit profile
Cards (24)
Displacement
:
Δ
x
=
\Delta x=
Δ
x
=
x
f
−
x
i
x_f-x_i
x
f
−
x
i
Average Velocity
(Slope of the Line):
v
x
,
a
ν
g
=
v_{x,a\nu g}=
v
x
,
a
νg
=
Δ
x
Δ
t
\frac{\Delta x}{\Delta t}
Δ
t
Δ
x
Instantaneous Velocity
:
v
x
=
v_x=
v
x
=
Δ
x
Δ
t
=
\frac{\Delta x}{\Delta t}=
Δ
t
Δ
x
=
d
x
d
t
\frac{dx}{dt}
d
t
d
x
Constant Velocity
:
x
f
=
x_{f}=
x
f
=
x
t
+
x_{t}+
x
t
+
v
x
Δ
t
{v}_{x}\Delta t
v
x
Δ
t
Acceleration:
a
=
a=
a
=
Δ
v
Δ
t
\frac{\Delta v}{\Delta t}
Δ
t
Δ
v
Average Acceleration
:
a
x
,
a
v
g
=
a_{x,avg}=
a
x
,
a
vg
=
Δ
v
x
Δ
t
\frac{\Delta\boldsymbol{v}_x}{\Delta\boldsymbol{t}}
Δ
t
Δ
v
x
Instantaneous Acceleration
:
a
x
=
a_x=
a
x
=
Δ
ν
x
Δ
t
=
\frac{\Delta\nu_x}{\Delta t}=
Δ
t
Δ
ν
x
=
d
ν
x
d
t
\frac{d\nu_x}{dt}
d
t
d
ν
x
Constant Acceleration Formulas:
v
f
=
v_{f}=
v
f
=
v
i
+
v_{i}+
v
i
+
a
x
Δ
t
a_{x}\Delta t
a
x
Δ
t
x
f
=
x_{f}=
x
f
=
x
i
+
x_{i}+
x
i
+
1
2
(
v
x
i
+
\frac{1}{2}(v_{xi}+
2
1
(
v
x
i
+
v
x
f
)
t
v_{xf})t
v
x
f
)
t
v
x
f
2
=
v_{xf}^{2}=
v
x
f
2
=
v
x
i
2
+
v_{xi}^{2}+
v
x
i
2
+
2
a
x
(
x
f
−
x
t
)
2a_{x}(x_{f}-x_{t})
2
a
x
(
x
f
−
x
t
)
x
f
=
x_{f}=
x
f
=
x
t
+
x_{t}+
x
t
+
v
x
t
t
+
v_{xt}t+
v
x
t
t
+
1
2
a
x
t
2
\frac{1}{2}a_{x}t^{2}
2
1
a
x
t
2
Constant Acceleration at
initial
time =
0
:
x
f
=
x_{f}=
x
f
=
x
i
+
x_{i}+
x
i
+
1
2
(
v
x
i
+
\frac{1}{2}(v_{xi}+
2
1
(
v
x
i
+
v
x
f
)
t
v_{xf})t
v
x
f
)
t
Free-Falling Object
:
v
y
f
=
v_{yf}=
v
y
f
=
v
y
i
−
g
Δ
t
v_{yi}-{g}\Delta t
v
y
i
−
g
Δ
t
Free-Falling
Object at
initial
time =
0
:
y
f
=
y_{f}=
y
f
=
y
i
+
y_{i}+
y
i
+
1
2
(
v
y
i
+
\frac{1}{2}(v_{yi}+
2
1
(
v
y
i
+
v
y
f
)
t
v_{yf}){t}
v
y
f
)
t
Free-Falling Object Formulas (motion is in y and a_y = -g):
v
y
f
=
v_{yf}=
v
y
f
=
v
y
t
−
g
Δ
t
v_{yt}-g\Delta t
v
y
t
−
g
Δ
t
y
f
=
y_{f}=
y
f
=
y
t
+
y_{t}+
y
t
+
1
2
(
v
y
t
+
\frac{1}{2}(v_{yt}+
2
1
(
v
y
t
+
v
y
f
)
t
v_{yf})t
v
y
f
)
t
v
y
f
2
=
v_{yf}^{2}=
v
y
f
2
=
v
y
i
2
−
2
g
(
y
f
−
y
t
)
v_{yi}^{2}-2g\left(y_{f}-y_{t}\right)
v
y
i
2
−
2
g
(
y
f
−
y
t
)
y
f
=
y_{f}=
y
f
=
y
t
+
y_{t}+
y
t
+
v
y
t
t
−
1
2
g
t
2
v_{yt}t-\frac{1}{2}gt^{2}
v
y
t
t
−
2
1
g
t
2
2-Dimension
Motion:
r
⃗
=
\vec{{r}}=
r
=
x
i
^
+
x\hat{{i}}+
x
i
^
+
y
j
^
y\hat{{j}}
y
j
^
Projectile Motion
x-axis
:
x
f
=
x_{f}=
x
f
=
x
i
+
x_{i}+
x
i
+
v
x
i
t
v_{xi}t
v
x
i
t
v
x
f
=
v_{xf}=
v
x
f
=
v
x
i
v_{xi}
v
x
i
Projectile Motion
y-axis
:
v
y
f
=
v_{yf}=
v
y
f
=
v
y
i
−
g
t
v_{yi}-gt
v
y
i
−
g
t
y
f
=
y_{f}=
y
f
=
y
i
+
y_{i}+
y
i
+
1
2
(
v
y
i
+
\frac{1}{2}(v_{yi}+
2
1
(
v
y
i
+
v
y
f
)
t
v_{yf})t
v
y
f
)
t
v
y
f
2
=
v_{yf}^{2}=
v
y
f
2
=
v
y
i
2
−
2
g
(
y
f
−
y
i
)
v_{yi}^{2}-2g(y_{f}-y_{i})
v
y
i
2
−
2
g
(
y
f
−
y
i
)
y
f
=
y_{f}=
y
f
=
y
i
+
y_{i}+
y
i
+
v
y
i
t
−
1
2
g
t
2
v_{yi}t-\frac{1}{2}gt^{2}
v
y
i
t
−
2
1
g
t
2
Projectile Motion
height
:
h
=
h=
h
=
v
i
2
sin
2
θ
i
2
g
\frac{{v_{i}}^{2}\sin^{2}\theta_{i}}{2g}
2
g
v
i
2
s
i
n
2
θ
i
Projectile Motion
horizontal range
:
R
=
R=
R
=
v
i
2
sin
2
θ
i
g
\frac{{v_i}^2\sin2\theta_i}g
g
v
i
2
s
i
n
2
θ
i
Projectile Motion
maximum range
:
R
m
a
x
=
R_{max}=
R
ma
x
=
v
i
2
g
\frac{{v_{i}}^{2}}{g}
g
v
i
2
Third
Law of Motion:
F
A
=
F_A=
F
A
=
−
F
B
-F_B
−
F
B
Conditions of Static Equilibrium - Forces:
∑
F
⃗
=
\sum\vec{F}=
∑
F
=
0
0
0
Conditions of Static Equilibrium - Torques:
∑
t
⃗
=
\sum\vec{t}=
∑
t
=
0
0
0
Translational
Equilibrium:
First Law of Motion:
∑
F
⃗
=
\sum\vec{{F}}=
∑
F
=
0
0
0
∑
F
⃗
x
=
\sum\vec{{F}}_{{x}}=
∑
F
x
=
0
∑
F
⃗
y
=
{0}\quad\sum\vec{{F}}_{{y}}=
0
∑
F
y
=
0
∑
F
⃗
z
=
{0}\quad\sum\vec{{F}}_{{z}}=
0
∑
F
z
=
0
{0}
0
Rotational
Equilibrium:
Σ
M
=
\Sigma M=
Σ
M
=
0
0
0
M
=
M=
M
=
F
L
FL
F
L
Direction of Moment:
+M:
counterclockwise
-M:
clockwise