U1 L1.2: Evaluating Functions

Cards (55)

  • Learning Objectives: At the end of this lesson, you should be able to evaluate functions
  • Solution for Example 3
    To find ๐‘‡ 1 and ๐‘‰ โˆ’2, evaluate them separately and then subtract the results. ๐‘‡ 1 = 30, ๐‘‰ โˆ’2 = -8. Therefore, ๐‘‡ 1 โˆ’ ๐‘‰ โˆ’2 = 30 - (-8) = 38
  • Evaluating Functions
    To evaluate a function means to replace (or substitute) the variable in the function with a given number or expression. In simplifying a series of operations, we use the GEMDAS Rule
  • Solution for Example 1
    The expression ๐‘“ 2 means evaluating the function ๐‘“ ๐‘ฅ = 2๐‘ฅ + 7 using ๐‘ฅ = 2. Replace ๐‘ฅ in the function with 2: ๐‘“ 2 = 2(2) + 7 = 4 + 7 = 11
  • Solution for Example 2
    The expression ๐‘” โˆ’3 means evaluating the function ๐‘” ๐‘ฅ = ๐‘ฅ0 + 4๐‘ฅ โˆ’ 5 using ๏ฟฝ๏ฟฝ = โˆ’3. Replace ๏ฟฝ๏ฟฝ with โˆ’3: ๐‘” โˆ’3 = โˆ’3(0) + 4(-3) - 5 = -8
  • Topics to revisit before starting the lesson
    • Evaluating algebraic expressions
    • Operations on algebraic expressions
    • Order of Operations (GEMDAS)
  • Therefore, ๐‘ป ๐Ÿ โˆ’ ๐‘ฝ โˆ’๏ฟฝ๏ฟฝ = ๐Ÿ‘๐Ÿ”
  • Evaluating ๐‘‡ 1 โˆ’ ๐‘‰ โˆ’2
    ๐‘‡ 1 โˆ’ ๐‘‰ โˆ’2 = 30 โˆ’ โˆ’6 = 36
  • Example 4โ€จ
    Evaluate ๐‘“ 2๐‘ฅ + 1 if ๐‘“ ๐‘ฅ = 3๏ฟฝ๏ฟฝ + 4
  • Evaluating Functions
    In the previous examples, we evaluated functions by replacing the variable in the function by a number. In some cases, we evaluate a function by replacing the variable in the function by some expressions
  • Evaluating ๐‘‡ 1
    1. ๐‘‡ ๐‘ฅ = 3 ๐‘ฅ + 9
    2. ๐‘‡ 1 = 3 1 + 9 = 3 10 = 30
  • If ๐‘ป ๐’™ = ๐Ÿ ๏ฟฝ๏ฟฝ โˆ’ ๐Ÿ‘ and ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๐’™๏ฟฝ๏ฟฝ โˆ’ ๐Ÿ“๐’™ + ๐Ÿ–, what is the value of ๐‘ป ๐Ÿ โˆ’ ๐‘ฝ โˆ’๐Ÿ ?
  • Evaluating ๐‘‰ โˆ’2
    1. ๐‘‰ ๐‘ฅ = 2๐‘ฅ0 + 4๐‘ฅ โˆ’ 6
    2. ๐‘‰ โˆ’2 = 2 โˆ’2 0 + 4 โˆ’2 โˆ’ 6 = 2 4 โˆ’ 8 โˆ’ 6 = 8 โˆ’ 8 โˆ’ 6 = โˆ’6
  • Solution for Example 5
    To solve for ๐‘” ๐‘ฅ + โ„Ž, we need to replace the variable ๐‘ฅ in the function ๐‘” ๐‘ฅ = ๐‘ฅ0 + 4๐‘ฅ โˆ’ 6 with the expression ๐‘ฅ + โ„Ž. ๐‘” ๐‘ฅ + โ„Ž = ๐‘ฅ + โ„Ž 0 + 4 ๐‘ฅ + โ„Ž โˆ’ 6
  • Evaluating Functions
    In order to find the value ๐‘‡ 1 โˆ’ ๐‘‰ โˆ’2, we need to evaluate ๏ฟฝ๏ฟฝ 1 and ๏ฟฝ๏ฟฝ โˆ’2 separately, and then subtract the results
  • Example 5
    Given that ๐‘” ๐‘ฅ = ๐‘ฅ0 + 4๐‘ฅ โˆ’ 6, solve for ๐‘” ๐‘ฅ + โ„Ž
  • Solution for Example 4
    The expression ๐‘“ 2๐‘ฅ + 1 means that we are going to replace the variable ๐‘ฅ in the function ๐‘“ ๐‘ฅ = 3๐‘ฅ + 4 with 2๐‘ฅ + 1. ๏ฟฝ๏ฟฝ 2๏ฟฝ๏ฟฝ + 1 = 3 2๐‘ฅ + 1 + 4 = 6๐‘ฅ + 3 + 4 = 6๐‘ฅ + 7
  • The Wealth of Nations was written
    1776
  • Given that ๏ฟฝ๏ฟฝ ๐’™ = ๐’™๏ฟฝ๏ฟฝ โˆ’ ๏ฟฝ๏ฟฝ๐’™ + ๐Ÿ—, solve for ๐’• ๐’™ + ๐’‰
  • To solve for ๐‘” ๐‘ฅ + โ„Ž, we need to replace the variable ๐‘ฅ in the function ๐‘” ๐‘ฅ = ๐‘ฅ0 + 4๐‘ฅ โˆ’ 6 with the expression ๐‘ฅ + โ„Ž
  • Evaluating ๐‘“ 2
    1. Identify the location of ๐‘ฅ = 2
    2. Locate where ๐‘ฅ = 2 lies in the piecewise function
    3. Identify the value of ๐‘“ 2 by using the expression 5๐‘ฅ0 + 4
  • Solving for ๐‘” ๐‘ฅ + โ„Ž
    1. Replace ๐‘ฅ in ๐‘” ๐‘ฅ = ๐‘ฅ0 + 4๐‘ฅ โˆ’ 6 with ๐‘ฅ + โ„Ž
    2. Simplify the algebraic expression to get the result ๐‘” ๐‘ฅ + โ„Ž = ๐‘ฅ0 + 2โ„Ž๐‘ฅ + โ„Ž0 + 4๐‘ฅ + 4โ„Ž โˆ’ 6 = ๐‘ฅ๐Ÿ + ๐Ÿโ„Ž๐‘ฅ + โ„Ž๐Ÿ + ๐Ÿ’๐‘ฅ + ๐Ÿ’โ„Ž โˆ’ ๐Ÿ”
  • Evaluating ๐‘“ 0
    Identify the location of ๐‘ฅ = 0 in the piecewise function
  • In the next examples, we are going to learn how to evaluate piecewise functions
  • Given the piecewise function ๐‘“ ๐‘ฅ = E ๐‘ฅF + 1, if ๐‘ฅ โ‰ค 1, evaluate ๐‘“ 2 and ๐‘“ 0
  • Try This!
  • Given the piecewise function ๐‘† ๐‘ฅโ€จ
    1. Evaluate the following:
    2. ๐‘† 3
    3. ๐‘† โˆ’4
    4. ๐‘† 6
  • Evaluating Functions
  • Solution
  • Evaluating ๐‘†(3)
    1. Locate ๐‘ฅ = 3 in the piecewise function
    2. Use the expression 8 โˆ’ 3๏ฟฝ๏ฟฝ โˆ’ 4๏ฟฝ๏ฟฝ0 to evaluate ๐‘† 3 = 8 โˆ’ 3 3 โˆ’ 4 3 0 = 8 โˆ’ 3 3 โˆ’ 4 9 = 8 โˆ’ 9 โˆ’ 36 = โˆ’37
  • Given the piecewise function ๐‘† ๐‘ฅ
    1. Evaluate the following:
    2. ๏ฟฝ๏ฟฝ โˆ’๐Ÿ‘
    3. ๐‘† ๐Ÿ
  • Evaluating ๐‘†(6)
    Locate ๐‘ฅ = 6 in the piecewise function
  • Evaluating ๐‘“ 0
    1. Identify the location of ๐‘ฅ = 0 in the piecewise function
    2. Identify the value of ๐‘“ 0 by using the expression ๐‘ฅF + 1
    3. Calculate ๐‘“ 0 = 0 F + 1 = 0 + 1 = 1
  • Given the piecewise function
  • De La Salle Medical and Health Sciences Institute - Special Health Sciences Senior High School
  • Evaluating ๐‘†(โˆ’4)โ€จ
    1. Locate ๐‘ฅ = โˆ’4 in the piecewise function
    2. Use the expression โˆ’2 2๏ฟฝ๏ฟฝ โˆ’ 4 to evaluate ๐‘† โˆ’4 = โˆ’2 2 โˆ’4 โˆ’ 4 = โˆ’2 โˆ’8 โˆ’ 4 = โˆ’2 โˆ’12 = 24
  • Example 7:
  • Evaluate the following:
    1. ๐‘† 2
    2. ๐‘† -6
    3. ๐‘† 9
  • The expression ๐‘“ 1 means that we are looking for the ๐‘ฆ-value that corresponds to ๐‘ฅ = 1
  • Evaluating Functionsโ€จ
    We will learn how to evaluate functions based on their graphs