Roots of polynomials

Cards (9)

  • If p and q are roots of a polynomial ax2+ax^2 +bx+ bx +c= c =0 0, then p + q = -b/a and p x q = c/a.
  • If p, q and r are roots of a polynomial ax3+ax^3 +bx2+ bx^2 +cx+ cx +d= d =0 0, then p\sum p = -b/a, pq\sum pq = c/a and pqr\sum pqr = -d/a.
  • If p, q, r and s are roots of a polynomial ax4+ax^4 +bx3+ bx^3 +cx2+ cx^2 +dx+ dx +e= e =0 0, then p\sum p = -b/a, pq\sum pq = c/a, pqr\sum pqr = -d/a and pqrs\sum pqrs = e/a.
  • 1/p + 1/q +...+ 1/n = p\sum p / pq\sum pq for any number of roots.
  • pnp^n x qnq^n x...x NnN^n = pq...N\sum pq...N for any number of roots.
  • p2+p^2 +q2+ q^2 +...+...+n2 n^2 = (p)2(\sum p)^2 - 2 pq\sum pq for any number of roots.
  • p3+p^3 +q3 q^3 = (p+q)2(p + q)^2 - 3 (p x q)(p + q) only for quadratics.
  • p3+p^3 +q3+ q^3 +r3 r^3 = (p+q+r)3(p + q + r)^3 - 3 (p + q + r)(pq\sum pq) + 3 (p x q x r) only for cubics
  • If a polynomial has roots p, q, r and s, the polynomial with roots a p + b, a q + b, a r + b and a s + b is given by f((w - b)/a).