Save
...
Kinematics
Motion
Constant acceleration
Save
Share
Learn
Content
Leaderboard
Learn
Created by
The Creator
Visit profile
Cards (8)
v
v
v
=
u
+
u\ +
u
+
a
t
\ at
a
t
How do you calculate velocity?
u
+
u\ +
u
+
a
t
\ at
a
t
s
s
s
=
u
t
+
ut\ +
u
t
+
1
2
a
t
2
\ \frac{1}{2}at^2
2
1
a
t
2
s
s
s
=
v
t
−
1
2
a
t
2
vt\ -\frac{1}{2}at^2
v
t
−
2
1
a
t
2
v
2
v^2
v
2
=
u
2
+
u^2+
u
2
+
2
a
s
2as
2
a
s
s
s
s
=
1
2
(
u
+
v
)
t
\frac{1}{2}\left(u+v\right)t
2
1
(
u
+
v
)
t
For graphs like the one attached, how do you calculate the total distance travelled?
Split
into
segments
+
calculate area
Vector motion equations:
v
‾
=
\underline{v}\ =
v
=
u
‾
+
\ \underline{u}\ +
u
+
a
‾
t
\ \underline{a}t
a
t
r
‾
=
\underline{r}\ =
r
=
r
‾
0
+
\ \underline{r}_0\ +
r
0
+
u
‾
t
+
\ \underline{u}t\ +
u
t
+
1
2
a
‾
t
2
\ \frac{1}{2}\underline{a}t^2
2
1
a
t
2
r
‾
=
\underline{r}\ =
r
=
r
‾
0
+
\ \underline{r}_0\ +
r
0
+
v
‾
t
−
1
2
a
‾
t
2
\ \underline{v}t\ -\ \frac{1}{2}\underline{a}t^2
v
t
−
2
1
a
t
2