Equations

Cards (85)

  • Absolute uncertainty

    Uncertainty of measuring instrument or half the range of readings, use the largest value, same units as the quantity
  • Fractional uncertainty

    Absolute uncertainty / measured or mean value
  • Percentage uncertainty
    (Absolute uncertainty / measured or mean value) x 100%
  • Percentage uncertainty in y
    (Δy/y) x 100%
  • Horizontal force component
    FH = Fcosθ
  • Vertical force component
    FV = Fsinθ
  • Pythagoras' theorem
    F = √(FH^2 + FV^2)
  • Average velocity
    v = (s2 - s1) / (t2 - t1) = (Δs) / (Δt) = (u + v) / 2
  • Average acceleration
    a = (v - u) / (t2 - t1) = (Δv) / (Δt)
  • Suvat equation 1

    a = (v - u) / t
  • Suvat equation 2
    s = (u + v)t / 2
  • Suvat equation 3
    s = ut + (1/2)at^2
  • Suvat equation 4
    v^2 = u^2 + 2as
  • Suvat equation 5
    s = (v^2 - u^2) / (2a)
  • Newton's second law: Force
    F = Δp/Δt = ma
  • Linear momentum
    p = mv
  • Conservation of linear momentum between two objects

    m1u1 + m2u2 = m1v1 + m2v2
  • Perfectly elastic collision

    Relative speed of approach = Relative speed of separation
  • Moment of a force
    T = Fx
  • Torque due to a couple
    τc = Fd
  • Principle of moments: Sum of clockwise moments = Sum of anticlockwise moments
  • Conditions of equilibrium: Σ Fnet = 0, Σ Tnet = 0
  • Density
    ρ = m/V
  • Pressure
    p = F/A
  • Pressure in fluids
    p = ρgh
  • Upthrust (buoyancy force)
    Fb = ρgV
  • Work done
    W = Fs cosθ
  • Principle of conservation of mechanical energy
  • Efficiency of a machine
    η = (useful work out) / (total work in) = (useful power out) / (total power in)
  • Mechanical power
    P = W/t = Fv
  • Change in gravitational potential energy
    ΔEp = mgh
  • Work done = force x distance moved = weight x change in height
  • Translational kinetic energy

    Ek = (1/2)mv^2 = p^2/(2m)
  • Effective spring constant in series
    1/ktot = 1/k1 + 1/k2 + ... + 1/kN
  • Effective spring constant in parallel
    ktot = k1 + k2 + ... + kN
  • Applied spring load
    F = kx
  • Strain
    ε = Δx/L0
  • Stress
    σ = F/A
  • Young's modulus
    E = σ/ε = (FL0)/(AΔx)
  • Springs in series
    ktot = 1 / (1/k1 + 1/k2 + ... + 1/kN)