A-level AQA Maths

    Cards (16)

    • Laws of Indices
      • axa³ = ax+y
      • ax/ay = ax-y
      • (a*)y = a*y
    • Trigonometry
      • Sine rule: sinA/sinB = sinC
      • Cosine rule: = + - 2bccosA
    • Perimeter, Area and Volume
      • Perimeter: C = 2πr = πd
      • Area: A = πr²
      • Area of trapezium: A = 1/2(a + b)h
      • Arc length: s =
      • Sector area: A = 1/2r²θ
    • Laws of Logarithms
      • x=a⇒n=log x
      • log x + log y = log(xy)
      • log x - log y = log(x/y)
      • klog x = log(xk)
    • Straight line equation
      y - y₁ = m(x - x₁)
    • Perpendicular lines
      m₁ m₂ = -1
    • Trigonometric Identities

      • sin²x + cos²x = 1
      • sec²x = 1 + tan²x
      • cosec²x = 1 + cot²x
      • sin2x = 2sinxcosx
      • cos2x = cos²x - sin²x
      • tan2x = 2tanx/(1 - tan²x)
    • Sequences
      • Arithmetic: u₁ = a + (n-1)d
      • Geometric: u₁ = ar^(n-1)
    • Differentiation
      • sinkx → kcos(kx)
      • coskx-ksin(kx)
      • ekx → kekx
      • lnx1/x
    • Chain rule: If y = f(g(x)), dy/dx = f'(g(x))g'(x)
    • Integration
      • ∫sinkx dx = -1/k cos(kx) + c
      • ∫coskx dx = 1/k sin(kx) + c
      • ∫ekx dx = 1/k ekx + c
      • ∫1/x dx = ln|x| + c
    • Product rule: The derivative of y = f(x)g(x), dy/dx = f'(x)g(x) + f(x)g'(x)
    • Standard Normal variable
      Z = (X-μ)/σ where X~N(μ,σ²)
    • Reverse Chain rule: [f'(g(x))g'(x)] = f(g(x)) + c
    • Mechanics
      • v = dr/dt
      • a = dv/dt = d²r/dt²
      • F = ma
    • Vectors: |xi + yj + zk| = √(x² + + )
    See similar decks