Save
A-level AQA Maths
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Christen Alilio
Visit profile
Cards (16)
Laws of Indices
axa³
=
ax+y
ax/ay
=
ax-y
(a*)y =
a*y
Trigonometry
Sine
rule: sinA/sinB =
sinC
Cosine
rule:
a²
=
b²
+
c²
-
2bccosA
Perimeter, Area and Volume
Perimeter: C =
2πr
=
πd
Area:
A
= πr²
Area of trapezium: A =
1/2
(a + b)h
Arc length: s =
rθ
Sector area: A =
1/2r²θ
Laws of
Logarithms
x
=a⇒n=
log x
log x
+
log y =
log
(
xy
)
log x
-
log y = log(
x/y
)
klog
x = log(
xk
)
Straight line equation
y
- y₁ =
m(x
- x₁)
Perpendicular lines
m₁ m₂ = -1
Trigonometric
Identities
sin²x + cos²x =
1
sec²x =
1
+
tan²x
cosec²x =
1
+
cot²x
sin2x = 2sinxcosx
cos2x =
cos²x
-
sin²x
tan2x =
2tanx
/(1 -
tan²x
)
Sequences
Arithmetic
: u₁ = a + (n-1)d
Geometric
: u₁ = ar^(n-1)
Differentiation
sinkx →
kcos
(
kx
)
coskx
→
-ksin
(kx)
ekx
→ kekx
lnx
→
1/x
Chain rule: If y =
f(g(x)
), dy/dx =
f'(g(x)
)g'(x)
Integration
∫sinkx dx =
-1/k cos(kx) + c
∫coskx dx =
1/k sin(kx) + c
∫ekx dx =
1/k ekx + c
∫1/x dx = ln|x| + c
Product rule: The derivative of y =
f(x)g(x)
, dy/dx =
f'(x)g(x)
+ f(x)g'(x)
Standard Normal variable
Z = (
X-μ
)/
σ
where X~N(μ,σ²)
Reverse Chain rule
: [f'(g(x))g'(x)] = f(g(x)) + c
Mechanics
v = dr/dt
a = dv/dt = d²r/dt²
F =
ma
Vectors: |xi + yj + zk| = √(x² +
y²
+
z²
)