A-level AQA Maths

Cards (16)

  • Laws of Indices
    • axa³ = ax+y
    • ax/ay = ax-y
    • (a*)y = a*y
  • Trigonometry
    • Sine rule: sinA/sinB = sinC
    • Cosine rule: = + - 2bccosA
  • Perimeter, Area and Volume
    • Perimeter: C = 2πr = πd
    • Area: A = πr²
    • Area of trapezium: A = 1/2(a + b)h
    • Arc length: s =
    • Sector area: A = 1/2r²θ
  • Laws of Logarithms
    • x=a⇒n=log x
    • log x + log y = log(xy)
    • log x - log y = log(x/y)
    • klog x = log(xk)
  • Straight line equation
    y - y₁ = m(x - x₁)
  • Perpendicular lines
    m₁ m₂ = -1
  • Trigonometric Identities

    • sin²x + cos²x = 1
    • sec²x = 1 + tan²x
    • cosec²x = 1 + cot²x
    • sin2x = 2sinxcosx
    • cos2x = cos²x - sin²x
    • tan2x = 2tanx/(1 - tan²x)
  • Sequences
    • Arithmetic: u₁ = a + (n-1)d
    • Geometric: u₁ = ar^(n-1)
  • Differentiation
    • sinkx → kcos(kx)
    • coskx-ksin(kx)
    • ekx → kekx
    • lnx1/x
  • Chain rule: If y = f(g(x)), dy/dx = f'(g(x))g'(x)
  • Integration
    • ∫sinkx dx = -1/k cos(kx) + c
    • ∫coskx dx = 1/k sin(kx) + c
    • ∫ekx dx = 1/k ekx + c
    • ∫1/x dx = ln|x| + c
  • Product rule: The derivative of y = f(x)g(x), dy/dx = f'(x)g(x) + f(x)g'(x)
  • Standard Normal variable
    Z = (X-μ)/σ where X~N(μ,σ²)
  • Reverse Chain rule: [f'(g(x))g'(x)] = f(g(x)) + c
  • Mechanics
    • v = dr/dt
    • a = dv/dt = d²r/dt²
    • F = ma
  • Vectors: |xi + yj + zk| = √(x² + + )