Save
Thermodynamics
formulas and constants
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Ki M
Visit profile
Cards (43)
Boiling point of water in celsius
100
degrees
boiling point in fahrenheit
212
degrees
boiling point in rankine
671.67
degrees
boiling point in kelvin
373.15
freezing point of water
0 degrees
freezing point of fahrenheit
32
degrees
freezing point of rankine
459.67
degrees
freezing point of kelvin
273.15
absolute zero
in celsius
-273.15
degrees
absolute zero
in
Fahrenheit
-459.65
degrees
absolute zero
in rankine
0
degrees
absolute zero
in
kelvin
0
celsius to fahrenheit
f
=
f=
f
=
9
/
5
c
+
9/5 c +
9/5
c
+
32
32
32
celsius to kelvin
k
=
k =
k
=
c
+
c +
c
+
273.15
273.15
273.15
fahrenheit to celsius
c
=
c=
c
=
5
/
9
(
F
−
32
)
5/9(F-32)
5/9
(
F
−
32
)
fahrenheit to rankine
R
=
R =
R
=
F
+
F+
F
+
459.67
459.67
459.67
mass density
ρ
=
\rho =
ρ
=
m
V
{\frac {m}{V}}
V
m
weight density
ρ
=
\rho =
ρ
=
W
V
{\frac {W}{V}}
V
W
specific volume
v
=
v =
v
=
V
m
=
{\frac {V}{m}}=
m
V
=
1
ρ
m
\frac{1}{\rho m}
ρ
m
1
specific gravity
for solid: 1000 kg/m^3
for gas: 1.4 kg/m^3
s
p
.
g
r
.
=
sp.gr.=
s
p
.
g
r
.
=
ρ
s
u
b
s
t
a
n
c
e
ρ
s
t
a
n
d
a
r
d
{\frac{\rho substance}{\rho standard}}
ρ
s
t
an
d
a
r
d
ρ
s
u
b
s
t
an
ce
pressure
P
=
P =
P
=
F
A
{\frac {F}{A}}
A
F
Gauge Pressure
P
g
a
u
g
e
=
Pgauge =
P
g
a
ug
e
=
P
a
b
s
−
P
a
t
m
Pabs-Patm
P
ab
s
−
P
a
t
m
total pressure
P
t
o
t
a
l
=
Ptotal=
Pt
o
t
a
l
=
P
a
t
m
+
Patm+
P
a
t
m
+
P
g
a
u
g
e
Pgauge
P
g
a
ug
e
pressure gauge
P
=
P=
P
=
ρ
h
g
{\rho}{h}{g}
ρ
h
g
pascal's
principle
P
1
=
P1=
P
1
=
P
2
P2
P
2
F
1
A
2
=
{\frac{F1}{A2}}=
A
2
F
1
=
F
2
A
2
{\frac{F2}{A2}}
A
2
F
2
expansion by length
Δ
L
=
ΔL =
Δ
L
=
α
L
Δ
T
αLΔT
αL
Δ
T
L
N
=
LN =
L
N
=
L
0
+
L0 +
L
0
+
Δ
L
ΔL
Δ
L
expansion by volume
Δ
V
=
ΔV =
Δ
V
=
β
V
0
Δ
T
βV0ΔT
β
V
0Δ
T
V
N
=
VN =
V
N
=
V
0
+
V0 +
V
0
+
Δ
V
ΔV
Δ
V
for almost all types of gases have the
same value at standard temperature 0℃
𝛽𝑔𝑎𝑠𝑒𝑠 = 3.66 × 10−3/℃
FOURIER’S
LAW OF
THERMAL
CONDUCTION
Q
t
=
{\frac{Q}{t}}=
t
Q
=
k
A
Δ
T
L
{\frac{kAΔT}{L}}
L
k
A
Δ
T
CONVECTION
Q
t
=
{\frac{Q}{t}}=
t
Q
=
h
A
Δ
T
hAΔT
h
A
Δ
T
STEFFAN BOLTZMANN LAW
Q
t
=
{\frac{Q}{t}}=
t
Q
=
σ
e
A
(
(
T
2
)
4
−
(
T
1
)
4
)
σeA((T2)^4 − (T1)^4)
σ
e
A
((
T
2
)
4
−
(
T
1
)
4
)
sensible heat
Q
=
Q =
Q
=
m
c
Δ
T
mcΔT
m
c
Δ
T
specific heat
For
water
and
ice
:
cw =
1
cal/g-°C
ci =
0.5
cal/g-°C
ABSOLUTE
ENTROPY
S
=
S=
S
=
Q
T
K
{\frac{Q}{TK}}
T
K
Q
IDEAL GAS LAW
𝑃
𝑉
=
𝑃𝑉 =
P
V
=
𝑛
𝑅
𝑇
𝑛𝑅𝑇
n
RT
UNIVERSAL GAS LAW
R
=
R=
R
=
8.314
J
m
o
l
−
K
8.314{\frac{J}{mol-K}}
8.314
m
o
l
−
K
J
=
=
=
1.986
B
T
U
m
o
l
−
k
1.986{\frac{BTU}{mol-k}}
1.986
m
o
l
−
k
BT
U
=
=
=
1545
f
t
−
l
b
m
o
l
−
K
1545{\frac{ft-lb}{mol-K}}
1545
m
o
l
−
K
f
t
−
l
b
BOYLE'S LAW
𝑃
1
𝑉
1
=
𝑃1𝑉1 =
P
1
V
1
=
𝑃
2
𝑉
2
𝑃2𝑉2
P
2
V
2
CHARLES' LAW
V
1
T
1
=
{\frac{V1}{T1}}=
T
1
V
1
=
V
2
T
2
{\frac{V2}{T2}}
T
2
V
2
GAY-LUSSAC'S LAW
P
1
T
1
=
{\frac{P1}{T1}}=
T
1
P
1
=
P
2
T
2
{\frac{P2}{T2}}
T
2
P
2
THE COMBINES GAS LAW
P
1
V
1
T
1
=
{\frac{P1V1}{T1}}=
T
1
P
1
V
1
=
P
2
V
2
T
2
{\frac{P2V2}{T2}}
T
2
P
2
V
2
Standard conditions STP
𝑇
=
𝑇 =
T
=
273.15
𝐾
=
273.15 𝐾 =
273.15
K
=
0
°
𝐶
0 °𝐶
0°
C
𝑃
=
𝑃 =
P
=
1
𝑎
𝑡
𝑚
=
1 𝑎𝑡𝑚 =
1
a
t
m
=
1.013
×
105
𝑃
𝑎
1.013 × 105 𝑃𝑎
1.013
×
105
P
a
Note: Under standard conditions,
1 kmol of ideal gas
occupies a volume of
22.4 m^3
See all 43 cards