Save
AP Calculus BC
Calculus Formulas
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Cameron Spears
Visit profile
Cards (7)
What
does Limit mean?
L
=
L =
L
=
lim
x
→
∞
f
(
x
)
\lim_{x\to\infty} f(x)
lim
x
→
∞
f
(
x
)
if and only if for some
positive
number
ϵ
\epsilon
ϵ
, there is a
positive
number
δ
\delta
δ
that if x is within
δ
\delta
δ
units of c, f(x) is within
ϵ
\epsilon
ϵ
units of L.
What is the
Limit Sum Law
?
lim
x
→
a
(
(
f
(
x
)
+
\lim_{x\to a}((f(x)+
lim
x
→
a
((
f
(
x
)
+
g
(
x
)
)
=
g(x))=
g
(
x
))
=
lim
x
→
a
f
(
x
)
+
\lim_{x\to a}f(x)+
lim
x
→
a
f
(
x
)
+
lim
x
→
a
g
(
x
)
\lim_{x\to a}g(x)
lim
x
→
a
g
(
x
)
What is the
Limit Difference Law
?
lim
x
→
a
(
f
(
x
)
−
g
(
x
)
)
=
\lim_{x\to a}(f(x)-g(x)) =
lim
x
→
a
(
f
(
x
)
−
g
(
x
))
=
lim
x
→
a
f
(
x
)
−
lim
x
→
a
g
(
x
)
\lim_{x \to a}f(x)-\lim_{x \to a}g(x)
lim
x
→
a
f
(
x
)
−
lim
x
→
a
g
(
x
)
What is the Constant
Multiple Laws
for Limits?
lim
x
→
a
(
c
f
(
x
)
)
=
\lim_{x\to a}(cf(x)) =
lim
x
→
a
(
c
f
(
x
))
=
c
lim
x
→
a
f
(
x
)
c\lim_{x\to a}f(x)
c
lim
x
→
a
f
(
x
)
What is the
Limit Product Law
?
lim
x
→
a
(
f
(
x
)
∗
\lim_{x\to a}(f(x)*
lim
x
→
a
(
f
(
x
)
∗
g
(
x
)
)
=
g(x)) =
g
(
x
))
=
(
lim
x
→
a
f
(
x
)
)
∗
(\lim_{x\to a}f(x))*
(
lim
x
→
a
f
(
x
))
∗
(
lim
x
→
a
g
(
x
)
)
(\lim_{x\to a}g(x))
(
lim
x
→
a
g
(
x
))
What is the
Limit quotient Law
?
lim
x
→
a
(
f
(
x
)
g
(
x
)
)
=
\lim_{x\to a} (\frac{f(x)}{g(x)})=
lim
x
→
a
(
g
(
x
)
f
(
x
)
)
=
lim
x
→
a
f
(
x
)
lim
x
→
a
g
(
x
)
\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}
l
i
m
x
→
a
g
(
x
)
l
i
m
x
→
a
f
(
x
)
What is the
Limit Power Law
?
lim
x
→
a
(
(
f
(
x
)
)
n
)
=
\lim_{x\to a}((f(x))^n)=
lim
x
→
a
((
f
(
x
)
)
n
)
=
(
lim
x
→
a
f
(
x
)
)
n
(\lim_{x\to a}f(x))^n
(
lim
x
→
a
f
(
x
)
)
n