Save
...
Maths
Pure
Integration
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Sophie Gaved
Visit profile
Cards (18)
Integration can be used to find
areas
bounded between a
curve
and the
coordinate
axes.
Integration is the
reverse
of differentiation, therefore is dy/dx = f(x), y =
∫
\int
∫
f(x)
dx.
After every integration, a
constant
,
c
, must be added as integrating is indefinite.
A definite integral is one bounded between two
limits.
∫
\int
∫
a x ^n dx =
a
∫
\int
∫
x
^
n
dx = (
a
/
n + 1
) x ^(n + 1).
∫
\int
∫
x ^ n + x ^ m dx =
∫
\int
∫
x
^
n
dx +
∫
\int
∫
x
^
m
dx.
When integrating over an interval that isn't entirely above or below the x axis,
split
the integral into
separate
regions.
∫
\int
∫
e ^ a x dx =
1/a
e
^ a x.
∫
\int
∫
1/ a x dx =
1/a
ln
(
a x
).
∫
\int
∫
sin a x dx =
- 1/a cos a x.
∫
\int
∫
cos a x dx =
1/a sin a x.
∫
\int
∫
u dv/dx dx =
u v -
∫
\int
∫
v du/dx dx.
∫
\int
∫
f'(x) f(x) ^ n dx =
f(x)
^(
n + 1
)/
n + 1.
∫
\int
∫
f'(x)/f(x) dx =
ln
f(x).
The trapezium rule is
∫
a
b
\int_a^b
∫
a
b
y dx =
1/2
h (y0 + yn +
2
(y1 + y2 +...+ y(n-1))).
The trapezium rule gives an overestimate when the curve is
convex.
The trapezium rule gives an underestimate when the curve is
concave.
When dy/dx = f(x)g(y),
∫
\int
∫
1/g(y)
dy =
∫
\int
∫
f(x)
dx.