Save
...
Maths
Pure
Integration
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Sophie Gaved
Visit profile
Cards (18)
Integration can be used to find
areas
bounded between a
curve
and the
coordinate
axes.
Integration is the
reverse
of differentiation, therefore is dy/dx = f(x), y =
∫
\int
∫
f(x)
dx.
After every integration, a
constant
,
c
, must be added as integrating is indefinite.
A definite integral is one bounded between two
limits.
∫
\int
∫
a x ^n dx =
a
∫
\int
∫
x
^
n
dx = (
a
/
n + 1
) x ^(n + 1).
∫
\int
∫
x ^ n + x ^ m dx =
∫
\int
∫
x
^
n
dx +
∫
\int
∫
x
^
m
dx.
When integrating over an interval that isn't entirely above or below the x axis,
split
the integral into
separate
regions.
∫
\int
∫
e ^ a x dx =
1/a
e
^ a x.
∫
\int
∫
1/ a x dx =
1/a
ln
(
a x
).
∫
\int
∫
sin a x dx =
- 1/a cos a x.
∫
\int
∫
cos a x dx =
1/a sin a x.
∫
\int
∫
u dv/dx dx =
u v -
∫
\int
∫
v du/dx dx.
∫
\int
∫
f'(x) f(x) ^ n dx =
f(x)
^(
n + 1
)/
n + 1.
∫
\int
∫
f'(x)/f(x) dx =
ln
f(x).
The trapezium rule is
∫
a
b
\int_a^b
∫
a
b
y dx =
1/2
h (y0 + yn +
2
(y1 + y2 +...+ y(n-1))).
The trapezium rule gives an overestimate when the curve is
convex.
The trapezium rule gives an underestimate when the curve is
concave.
When dy/dx = f(x)g(y),
∫
\int
∫
1/g(y)
dy =
∫
\int
∫
f(x)
dx.
See similar decks
Edexcel A-Level Mathematics
1566 cards
OCR A-Level Geography
2555 cards
OCR A-Level Philosophy
1508 cards
AQA A-Level Sociology
2471 cards
AQA A-Level Physics
3710 cards
AQA A-Level Geography
1774 cards
AQA A-Level Spanish
2131 cards
OCR A-Level History
3511 cards
AQA A-Level Politics
1262 cards
OCR A-Level Biology
3977 cards
AQA A-Level Philosophy
1877 cards
OCR A-Level Spanish
2348 cards
OCR A-Level German
1048 cards
OCR A-Level German
1190 cards
AQA A-Level French
2183 cards
AQA A-Level Economics
4581 cards
Edexcel A-Level Geography
1080 cards
AQA A-Level Mathematics
1840 cards
OCR A-Level Mathematics
1577 cards
AQA A-Level Music
1824 cards
2024-25 AQA A-Level Physics
4036 cards