mdffff

Cards (11)

  • Differential equation (DE)

    An equation containing derivatives of one or more unknown functions (or dependent variables) with respect to one or more independent variables
  • Examples of DE

    • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
    • 𝑑2𝑦 𝑑π‘₯2 +οΏ½οΏ½2𝑦 =0
    • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯��𝑑𝑦 = 0
    • πœ•2𝑉 πœ•π‘₯2
    • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•οΏ½οΏ½2 3 ) =0 βˆ’π‘₯𝑦𝑑𝑀 𝑑π‘₯
    • π‘₯πœ•π‘“ πœ•π‘₯ +π‘¦πœ•οΏ½οΏ½ πœ•π‘¦ +𝑀=0
  • Ordinary Differential Equation (ODE)

    Contains only ordinary derivatives of one or more functions with respect to a single independent variable
  • Partial Differential Equation (PDE)
    Involves partial derivatives of one or more unknown functions of two or more independent variables
  • Order of DE

    The order of the highest derivative that appears in the equation
  • First order DE

    • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
    • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯𝑦𝑑𝑦 = 0
    • π‘₯πœ•π‘“ πœ•π‘₯ +π‘¦πœ•π‘“ πœ•π‘¦ +𝑀=0
  • Second order DE

    • 𝑑2𝑦 𝑑π‘₯2 +π‘˜2𝑦 =0
    • πœ•2𝑉 πœ•π‘₯2
    • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•π‘¦2 3 ) =0 βˆ’π‘₯𝑦𝑑𝑀 𝑑π‘₯ +𝑀=0
  • Linear ODE

    Of the form 𝑛(π‘₯)��𝑛𝑦 𝑑π‘₯𝑛 +π‘Žπ‘›βˆ’1(π‘₯)π‘‘π‘›βˆ’1𝑦 𝑑π‘₯π‘›βˆ’1 +β‹―+π‘Ž1(π‘₯)𝑑𝑦 𝑑π‘₯ +π‘Ž0(π‘₯)𝑦 = 𝑔(π‘₯)
  • Nonlinear ODE

    One that is not linear or not in the form of 𝑛(π‘₯)𝑑𝑛𝑦 𝑑π‘₯𝑛 +π‘Žπ‘›βˆ’1(π‘₯)π‘‘π‘›βˆ’1𝑦 𝑑π‘₯π‘›βˆ’1 +β‹―+π‘Ž1(π‘₯)𝑑𝑦 𝑑π‘₯ +π‘Ž0(π‘₯)𝑦 = 𝑔(π‘₯)
  • Linear DE

    • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
    • 𝑑2𝑦 𝑑π‘₯2 +οΏ½οΏ½2𝑦 =0
  • Nonlinear DE

    • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯��𝑑𝑦 = 0
    • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•οΏ½οΏ½2 3 ) =0 βˆ’π‘₯��𝑑𝑀 𝑑π‘₯ +𝑀=0