mdffff

    Cards (11)

    • Differential equation (DE)

      An equation containing derivatives of one or more unknown functions (or dependent variables) with respect to one or more independent variables
    • Examples of DE

      • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
      • 𝑑2𝑦 𝑑π‘₯2 +οΏ½οΏ½2𝑦 =0
      • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯��𝑑𝑦 = 0
      • πœ•2𝑉 πœ•π‘₯2
      • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•οΏ½οΏ½2 3 ) =0 βˆ’π‘₯𝑦𝑑𝑀 𝑑π‘₯
      • π‘₯πœ•π‘“ πœ•π‘₯ +π‘¦πœ•οΏ½οΏ½ πœ•π‘¦ +𝑀=0
    • Ordinary Differential Equation (ODE)

      Contains only ordinary derivatives of one or more functions with respect to a single independent variable
    • Partial Differential Equation (PDE)
      Involves partial derivatives of one or more unknown functions of two or more independent variables
    • Order of DE

      The order of the highest derivative that appears in the equation
    • First order DE

      • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
      • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯𝑦𝑑𝑦 = 0
      • π‘₯πœ•π‘“ πœ•π‘₯ +π‘¦πœ•π‘“ πœ•π‘¦ +𝑀=0
    • Second order DE

      • 𝑑2𝑦 𝑑π‘₯2 +π‘˜2𝑦 =0
      • πœ•2𝑉 πœ•π‘₯2
      • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•π‘¦2 3 ) =0 βˆ’π‘₯𝑦𝑑𝑀 𝑑π‘₯ +𝑀=0
    • Linear ODE

      Of the form 𝑛(π‘₯)��𝑛𝑦 𝑑π‘₯𝑛 +π‘Žπ‘›βˆ’1(π‘₯)π‘‘π‘›βˆ’1𝑦 𝑑π‘₯π‘›βˆ’1 +β‹―+π‘Ž1(π‘₯)𝑑𝑦 𝑑π‘₯ +π‘Ž0(π‘₯)𝑦 = 𝑔(π‘₯)
    • Nonlinear ODE

      One that is not linear or not in the form of 𝑛(π‘₯)𝑑𝑛𝑦 𝑑π‘₯𝑛 +π‘Žπ‘›βˆ’1(π‘₯)π‘‘π‘›βˆ’1𝑦 𝑑π‘₯π‘›βˆ’1 +β‹―+π‘Ž1(π‘₯)𝑑𝑦 𝑑π‘₯ +π‘Ž0(π‘₯)𝑦 = 𝑔(π‘₯)
    • Linear DE

      • 𝑑𝑦 𝑑π‘₯ =π‘π‘œπ‘ π‘₯
      • 𝑑2𝑦 𝑑π‘₯2 +οΏ½οΏ½2𝑦 =0
    • Nonlinear DE

      • (π‘₯2 +𝑦2)𝑑π‘₯ βˆ’2π‘₯��𝑑𝑦 = 0
      • (𝑑2𝑀 𝑑π‘₯2 +πœ•2𝑉 πœ•οΏ½οΏ½2 3 ) =0 βˆ’π‘₯��𝑑𝑀 𝑑π‘₯ +𝑀=0
    See similar decks