1 Biological Molecules

Cards (111)

  • Monomers are smaller, repeating molecules from which larger molecules, polymers, are made
  • Polymers are molecules made up of many identical molecules called monomers.
  • In a condensation reaction, 2 molecules join together, forming a chemical bond and releasing a water molecule
  • In a hydrolysis reaction, 2 molecules are separated by breaking a chemical bond using a water molecule
  • fill in the blanks:
    A) nucleotide
    B) starch
    C) amino acid
  • Monosaccharides are monomers from which larger carbohydrates are made
  • Complete the structure of alpha glucose:
    A) H
    B) OH
    C) HO
    D) H
    E) O
  • Isomers have the same molecular formula, but have differently arranged atoms
  • In alpha glucose, the OH group is below carbon-1, whereas in beta glucose, it is above.
  • Disaccharides are two monosaccharides joined together with a glycosidic bond, formed by a condensation reaction, releasing a water molecule
  • fill in the blanks:
    A) glucose
    B) glucose
    C) glucose
    D) fructose
    E) glucose
    F) galactose
  • fill in the blanks:
    A) condensation
    B) hydrolysis
    C) glycosidic
    D) H2O
  • Polysaccharides are many monosaccharides joined together with glycosidic bonds, formed by many condensation reactions, releasing water molecules.
  • Glucose is stored as starch in plant cells, whereas in animal cells, it is stored as glycogen.
  • Starch is:
    • a polysaccharide of alpha glucose
    • Amylose - 1,4 glycosidic bonds. it is unbranched
    • Amylopectin - 1,4 and 1,6 glycosidic bonds. it is branched
  • Glycogen is:
    • A polysaccharide made of alpha glucose
    • Structured by 1,4 and 1,6 glycosidic bonds. it is branched
  • fill in the blanks:
    A) amylose
    B) amylopectin
    C) glycogen
  • fill in the blanks:
    A) 1,4
    B) 1,6
  • Structure of starch related to its function:
    • Helical, so compact for storage in cell
    • Large, insoluble polysaccharide molecule, so can’t leave cell membrane 
    • Insoluble in water, so water potential of cell not affected (no osmotic effect)
  • Structure of glycogen related to its function:
    • Branched, so it is compact and can fit more molecules in small areaBranched, so more ends for faster hydrolysis, so release glucose for respiration to make ATP for energy 
    • Large, insoluble polysaccharide molecule, so can’t leave cell membrane
    • Insoluble in water, so water potential of cell not affected (no osmotic effect)
  • Cellulose provides strength and structural to plant cell walls
  • Cellulose structure:
    • Polysaccharide of beta glucose
    • Chains linked in parallel by hydrogen bonds forming microfibrils
    • 1,4-glycosidic bond, so it has straight, unbranched chains
  • Cellulose structure related to its function:
    • Every other beta glucose molecule is inverted in a long, straight, unbranched chain
    • Many hydrogen bonds link parallel strands (crosslinks) to form microfibrils (strong fibres)
    • Hydrogen bonds are strong in high numbers, so provides strength to plant cell walls
  • This is the structure of cellulose
    A) beta glucose
    B) 1,4
    C) hydrogen
  • Reducing sugars include monosaccharides, maltose and lactose
  • Test for reducing sugars:
    1. Add Benedict’s solution (blue) to sample
    2. Heat in a boiling water bath
    3. Positive result = green / yellow / orange / red precipitate
  • Sucrose is a non-reducing sugar
  • Test for non-reducing sugars:
    1. Do Benedict’s test and stays blue / negative
    2. Heat in a boiling water bath with acid (to hydrolyse into reducing sugars)
    3. Neutralise with alkali (eg. sodium bicarbonate)
    4. Heat in a boiling water bath with Benedict’s solution
    5. Positive result = green / yellow / orange / red precipitate
  • To measure the quantity of sugar in a solution, filter and dry the precipitate from the Benedict's solution, and find the mass
  • Measuring quantity of sugar in a solution:
    1. Make sugar solutions of known concentrations (eg. dilution series)
    2. Heat a set volume of each sample with a set volume of Benedict’s solution for same time
    3. Use colorimeter to measure absorbance (of light) of each known concentration
    4. Plot calibration curve - concentration on x axis, absorbance on y axis and draw line of best fit
    5. Repeat Benedict’s test with unknown sample and measure absorbance
    6. Read off calibration curve to find concentration associated with unknown sample’s absorbance
  • Test for starch:
    • Add iodine solution (orange brown) and shake or stir
    • The positive result is a blue black colour
  • Triglycerides and phospholipids are examples of lipids
  • Fill in the blanks
    A) Saturated
    B) Unsaturated
  • Structure of a fatty acid:
    • Variable R group - Hydrocarbon chain
    • -COOH - carboxyl group
  • Saturated fatty acids have no C=C double bonds in hydrocarbon chain; all carbons fully saturated with hydrogen
  • Unsaturated fatty acids have one or more C=C double bond in hydrocarbon chain creating bend / kink
  • Formation of triglycerides:
    1. 1 glycerol molecule and 3 fatty acids
    2. Condensation reaction
    3. Removing 3 water molecules
    4. Forming 3 ester bonds
  • fill in the blanks:
    A) glycerol
    B) fatty acids
    C) triglyceride
    D) ester
  • Function of triglycerides related to its structure:
    • High ratio of C-H bonds to carbon atoms in hydrocarbon chain, so used in respiration to release more energy than same mass of carbohydrates
    • Non-polar fatty acids so insoluble in water (clump together as droplets), so no effect on water potential of cell (or can be used for waterproofing)
  • fill in the blanks:phos
    A) phosphate
    B) glycerol
    C) fatty acid
    D) fatty acid