formulas

Cards (52)

  • Pythagoras Theorem applies when looking at right-angled triangles
  • Area of a rectangle
    Length x Width
  • Area of a triangle
    1/2 x Base x Height
  • Area of a trapezium
    1/2 x (a + b) x Height
  • Area of a parallelogram
    Base x Height
  • Area of a circle
    π x r^2
  • Circumference of a circle
    π x Diameter
  • Volume of a prism
    Area of cross-section x Length
  • Volume of a cylinder

    π x r^2 x Height
  • Radius
    The distance from the centre of a circle to the edge
  • Height
    The distance from the base to the top of an object
  • Calculating volume of a cylinder
    1. Calculate pi x radius^2
    2. Multiply by height
  • Do not round working out when calculating volume
  • Pythagoras Theorem
    a^2 + b^2 = c^2, where a and b are the shorter sides of a right-angled triangle and c is the hypotenuse (longest side)
  • Density
    Mass / Volume
  • Speed

    Distance / Time
  • Pressure
    Force / Area
  • sin 0
    0
  • sin 30
    1/2
  • sin 45
    1/√2
  • sin 60
    √3/2
  • sin 90
    1
  • cos 0
    1
  • cos 30
    √3/2
  • cos 45
    1/√2
  • cos 60
    1/2
  • cos 90
    0
  • tan 0
    0
  • tan 30
    1/√3
  • tan 45
    1
  • tan 60
    √3
  • Volume of a pyramid
    1/3 x Area of base x Height
  • Area of a triangle using sine

    1/2 x a x b x sin(C)
  • Cosine rule
    Used to find the length of a side in a triangle when the lengths of the other two sides and the angle between them are known
  • Using the cosine rule
    1. Substitute values into the formula
    2. Solve for the unknown side length
  • Rearranged cosine rule

    cos a = (b^2 + c^2 - a^2) / (2bc)
  • Using rearranged cosine rule
    1. Substitute values into the formula
    2. Solve for the unknown angle
  • Area of a triangle using sine
    1/2 * a * b * sin c
  • Calculating area of a triangle using sine

    1. Identify the lengths a, b and angle c
    2. Substitute into the formula
    3. Calculate the area
  • Area of a sector

    π * r^2 * (θ/360)