Công thức quên

Cards (24)

  • (1v)=(\frac{1}{v})' =vv2-\frac{v}{v^2}
  • (lnx)=(ln|x|)' = 1x\frac{1}{x} ,x0\forall x\neq0
  • (xn)=(x^n)' = nxn1nx^{n-1}
  • (1x)=(\frac{1}{x})' = 1x2-\frac{1}{x^2}
  • (x)=(\sqrt{x})' = 12x\frac{1}{2\sqrt{x} }
  • (un)=(u^n)' = nun1.unu^{n-1}.u'
  • (1u)=(\frac{1}{u})' = uu2-\frac{u'}{u^2}
  • (u)=(\sqrt{u})' = u2u\frac{u'}{2\sqrt{u} }
  • (sin(x))=(\sin(x))' = cos(x)\cos(x)
  • (cos(x))=(\cos(x))' = sin(x)-\sin(x)
  • (tan(x))=(\tan(x))' = 1cos2x\frac{1}{cos^2x}
  • (cot(x))=(\cot(x))' = 1sin2x-\frac{1}{sin^2x}
  • (sin(u))=(\sin(u))' = u.cos(u)u'.\cos(u)
  • (cos(u))=(\cos(u))' = u.sin(u)-u'.\sin(u)
  • (tan(u))=(tan(u))' = ucos2u\frac{u'}{\cos^2u}
  • (cot(u))=(\cot(u))' = usin2u-\frac{u'}{\sin^2u}
  • (ex)=(e^x)' = exe^x
  • (ax)=(a^x) = an.ln(a)a^n . \ln(a)
  • (ln(x))=(\ln(x))' = 1x\frac{1}{x}
  • (logau)=(\log_au)' = 1xln(a)\frac{1}{x\ln(a)}
  • (eu)=(e^u)' = eu.ue^u . u'
  • (au)=(a^u)' = au.u.ln(a)a^u.u'.\ln(a)
  • (ln(u))=(ln(u))' = uu\frac{u'}{u}
  • (logau)=(\log_au)' = uuln(a)\frac{u'}{u\ln(a)}