Normal distributions have the same basic shape but can differ in their maximum height and width
The mean is useful but fails to take into consideration the variation of values within a sample
The standard deviation has to be calculated to find the spread of measurements about the mean of the normal distribution
If the standard deviation is large the measurements are more spread about the mean, meaning it is not as reliable
95% of the data points of the sample will be in between 2 standard deviations of the mean
Standard deviation allows for statistical analysis as it can test whether differences between two or more sets of data are statistically significant or not
68% of the data points are within 1 standard deviation of the mean
If the error bars do not overlap, there is a statistical significant difference between the mean of two or more sets of data and the difference is not due to chance
If the error bars overlap, there isn't s significant statistical difference between the mean of the two sets of data and the difference is due to chance