Equations + industry

Cards (12)

  • Flue gas removal
    CaO(s) + 2H20(l) + SO2(g) -> CaSO3(aq) + 2H20(l)
    CaCO3(s) + 2H20(l) + SO2 -> CaSO3(aq) + 2H20(l) + CO2(aq)
  • Cl- & F- and sulphuric acid

    Cl- and F- are too weak reducing agents to cannot reduce sulphur and the reaction only produces the steamy fumes of the hydrogen hallide:
    l NaCl + H2SO4 -> HCl + NaHSO4
    Observations:
    Steamy fumes (that turn litmus paper red), white solid (sodium bisulfate)   
  • Bromide ions and sulphuric acid 

    Bromide only strong enough to reduce sulphur from +6 to +4
    2Br-    Br2  +  2e-
    H2SO4 + 2H+ + 2BR- _> Br2 + SO2 + 2H20
    Combines to make:
    H2SO4 + 2H+ + 2Br- -> Br2 + SO2 + 2H20
    Observations:
    Orange fumes (bromine), (colourless odourless SO2 has also been produced)
  • Iodide ions and sulphuric acid
    Iodide can reduce sulphur from +6 to +4, 0, -2
    Sulphur dioxide, sulphur, hydrogen sulphide    
    H2SO4 + 8H+ + 8I- -> 4I2 + H2S + 4H20
     
    Observations:
    Purple fumes (iodine vapour), dark grey solid (iodine which condenses at the top of the tube), choking gas with bad egg smell produced (H2S)
  • Uses of chlorine/chlorate
     Reacts with water:
    Cl2(g) + H20(l) <-> HCl(aq) + HCLO(aq)
    HClO decomposes in the presence of sunlight:
    2HClO(aq) -> 2HCl(aq) + O2(g) (sunlight)
     
    OVERALL:
    2H20(l) + 2Cl2(g) <-> 4HCl(aq) + O2(g)
     
    l In presence of UV light:
    2Cl2 + 2H20 -> 4HCl + O2 
  • l BLEACH PRODUCTION:
    Cold aqueous sodium hydroxide
    2NaOH + Cl2 -> NaClO + NaCl + H20
  • Lithium cobalt oxide batteries
    • LiCoO2 batteries were the first lithium ion batteries invented.
    • They have one electrode made of LiCoO2 and one made of graphite.
    • The two half equations are:
    • Li+ + e- ⇌ Li(s), Eθ = −3.04V
    • Li+ + CoO2 + e- ⇌ LiCoO2, Eθ = 0.56V
    • The Li+/Li(s) cell has a more negative Eθ so is reversed.
    • The overall cell potential is: Eθcell = 0.56 − (−3.04) = 3.6V.
    • To reverse the reaction, you apply an external current of at least 3.6V to push the reactions in the opposite directions.
  • Alkaline fuel cell
    2H2 (g) + 4OH– (aq)  →  4H2O (l) +  4e–                     Eꝋ = -0.83 V 
    O2 (g) +  2H2O  +  4e– →  4OH– (aq)                      Eꝋ = +0.40 V 
    overall: 2H2 (g) + O2 (g)  →   2H2O (l)           Eꝋ = +1.23 V
  • Acid fuel cell
    Negative electrode:   H2 (g) →  2H+ (aq) +  2e–   Eθ = 0.00 V
    Positive electrode:   O2 (g) +  4H+ (aq) +  4e– →  2H2O (l)   Eθ = +1.23 V 
    Overall:
    2H2 (g) + O2 (g) + 4H+ (aq) +  4e– →   2H2O (l) +  4H+ (aq) + 4e– 
     2H2 (g) + O2 (g)  →   2H2O (l)           Eθ = +1.23 V
  • Advantages of fuel cells
    Advantages of fuel cells
    • Fuel cells have a high efficiency.
    • This means that they get more energy out of the same amount of fuel than less efficient devices.
    • Their only by-product is water (no CO2(g) is produced).
    • They don’t need to be recharged - they will work as long as the fuel is supplied
  • Disadvantages of fuel cells
    Disadvantages of fuel cells
    • Hydrogen is flammable and so must be stored very carefully.
    • Energy is needed to produce the reactants of hydrogen and oxygen.
    • This energy usually comes from fossil fuels, so there are some CO2(g) emissions.
  • Vanadium catalyst- heterogenous
    V2O5 + SO2 --> V2O4 + SO3
    V2O4 + 1/2O2 --> V2O5